Poly(ethylene oxide)/Poly(vinylidene fluoride)/Li6.4La3Zr1.4ATa0.6O12 composite electrolyte with a stable interface for high performance solid state lithium metal batteries

被引:49
作者
Bai, Changjiang [1 ]
Wu, Zhenguo [1 ]
Xiang, Wei [2 ]
Wang, Gongke [3 ]
Liu, Yuxia [4 ]
Zhong, Yanjun [1 ]
Chen, Butian [5 ]
Liu, Rundie [1 ]
He, Fengrong [5 ]
Guo, Xiaodong [1 ]
机构
[1] Sichuan Univ, Coll Chem Engn, Chengdu 610065, Peoples R China
[2] Chengdu Univ Technol, Coll Mat & Chem & Chem Engn, Chengdu 610059, Peoples R China
[3] Henan Normal Univ, Sch Mat Sci & Engn, Xinxiang 453007, Henan, Peoples R China
[4] Qufu Normal Univ, Key Lab Life Organ Anal, Key Lab Pharmaceut Intermediates & Anal Nat Med, Sch Chem & Chem Engn, Qufu 273165, Shandong, Peoples R China
[5] Ruyuan Hec Technol Corp, Postdoctoral Mobile Res Ctr, Ruyuan 512000, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Composite electrolyte; Polyethylene oxide; Ionic conductivity; Interfacial impedance; Stable layer; Solid lithium metal battery; NI-RICH CATHODE; HIGH IONIC-CONDUCTIVITY; POLYMER ELECTROLYTE; HIGH-VOLTAGE; STABILITY; MEMBRANE; GRADIENT; SURFACE;
D O I
10.1016/j.jpowsour.2020.228461
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer-ceramic composite electrolyte is an effective solution for developing high-performance and flexible all-solid-state lithium metal battery. However, the key bottleneck of composite electrolyte including low ionic conductivity and high interfacial impedance have impeded their industrialization in solid electrolyte lithium batteries. Here we present a polymer-ceramic hybrid electrolyte (polyethylene oxide (PEO)/polyvinylidene fluoride (PVDF)/Li(6.4)La(3)Zr(1.4)ATa(0.6)O(12) (LLZTO)) is designed and modified by trace amount of liquid electrolyte. The addition of PVDF can not only reduce the crystallinity of PEO polymer, but also intensify the affinity between liquid electrolyte and the composite electrolyte. Furthermore, the interfacial modification can synchronously achieve the intimate connection, low interfacial impedance between the electrodes and solid electrolytes by forming the viscoelastic and stable layer. Due to the artful design, the solid-state battery deliver excellent performance. The Li symmetric cells show excellent interface stability without short circuits for 1000h. The assembled LiFePO4/Li cells exhibit a discharge capacity of 160.1 mA h g(-1) after 200 cycles at 0.4C and 143.3 mA h g(-1) at 5C. The composite solid electrolyte provides an effective and feasible methods to solve the interfacial issues and develop high performance solid lithium metal batteries.
引用
收藏
页数:10
相关论文
共 48 条
[1]   Structure and electrochemical properties of composite polymer electrolyte based on poly vinylidene fluoride-hexafluoropropylene/titania-poly(methyl methacrylate) for lithium-ion batteries [J].
Cao, Jiang ;
Wang, Li ;
Fang, Mou ;
He, Xiangming ;
Li, Jianjun ;
Gao, Jian ;
Deng, Lingfeng ;
Wang, Jianlong ;
Chen, Hong .
JOURNAL OF POWER SOURCES, 2014, 246 :499-504
[2]   PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic" [J].
Chen, Long ;
Li, Yutao ;
Li, Shuai-Peng ;
Fan, Li-Zhen ;
Nan, Ce-Wen ;
Goodenough, John B. .
NANO ENERGY, 2018, 46 :176-184
[3]   Addressing the Interface Issues in All-Solid-State Bulk-Type Lithium Ion Battery via an All-Composite Approach [J].
Chen, Ru-Jun ;
Zhang, Yi-Bo ;
Liu, Ting ;
Xu, Bing-Qing ;
Lin, Yuan-Hua ;
Nan, Ce-Wen ;
Shen, Yang .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (11) :9654-9661
[4]   Effect of calcining and Al doping on structure and conductivity of Li7La3Zr2O12 [J].
Chen, Ru-Jun ;
Huang, Mian ;
Huang, Wen-Ze ;
Shen, Yang ;
Lin, Yuan-Hua ;
Nan, Ce-Wen .
SOLID STATE IONICS, 2014, 265 :7-12
[5]   Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces [J].
Chen, Rusong ;
Li, Qinghao ;
Yu, Xiqian ;
Chen, Liquan ;
Li, Hong .
CHEMICAL REVIEWS, 2020, 120 (14) :6820-6877
[6]   Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework [J].
Chen, Xinzhi ;
He, Wenjun ;
Ding, Liang-Xin ;
Wang, Suqing ;
Wang, Haihui .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (03) :938-944
[7]   Engineered Interfaces in Hybrid Ceramic - Polymer Electrolytes for Use in All-Solid-State Li Batteries [J].
Chinnam, Parameswara Rao ;
Wunder, Stephanie L. .
ACS ENERGY LETTERS, 2017, 2 (01) :134-138
[8]   Interface Engineering for Garnet-Based Solid-State Lithium-Metal Batteries: Materials, Structures, and Characterization [J].
Dai, Jiaqi ;
Yang, Chunpeng ;
Wang, Chengwei ;
Pastel, Glenn ;
Hu, Liangbing .
ADVANCED MATERIALS, 2018, 30 (48)
[9]   Lithium/Oxygen Incorporation and Microstructural Evolution during Synthesis of Li-Rich Layered Li[Li0.2Ni0.2Mn0.6]O2 Oxides [J].
Hua, Weibo ;
Chen, Mingzhe ;
Schwarz, Bjoern ;
Knapp, Michael ;
Bruns, Michael ;
Barthel, Juri ;
Yang, Xiushan ;
Sigel, Florian ;
Azmi, Raheleh ;
Senyshyn, Anatoliy ;
Missiul, Alkesandr ;
Simonelli, Laura ;
Etter, Martin ;
Wang, Suning ;
Mu, Xiaoke ;
Fiedler, Andy ;
Binder, Joachim R. ;
Guo, Xiaodong ;
Chou, Shulei ;
Zhong, Benhe ;
Indris, Sylvio ;
Ehrenberg, Helmut .
ADVANCED ENERGY MATERIALS, 2019, 9 (08)
[10]   Shape-controlled synthesis of hierarchically layered lithium transition-metal oxide cathode materials by shear exfoliation in continuous stirred-tank reactors [J].
Hua, Weibo ;
Wu, Zhenguo ;
Chen, Mingzhe ;
Knapp, Michael ;
Guo, Xiaodong ;
Indris, Sylvio ;
Binder, Joachim R. ;
Bramnik, Natalia N. ;
Zhong, Benhe ;
Guo, Haipeng ;
Chou, Shulei ;
Kang, Yong-Mook ;
Ehrenberg, Helmut .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (48) :25391-25400