Poly(ethylene oxide)/Poly(vinylidene fluoride)/Li6.4La3Zr1.4ATa0.6O12 composite electrolyte with a stable interface for high performance solid state lithium metal batteries

被引:46
|
作者
Bai, Changjiang [1 ]
Wu, Zhenguo [1 ]
Xiang, Wei [2 ]
Wang, Gongke [3 ]
Liu, Yuxia [4 ]
Zhong, Yanjun [1 ]
Chen, Butian [5 ]
Liu, Rundie [1 ]
He, Fengrong [5 ]
Guo, Xiaodong [1 ]
机构
[1] Sichuan Univ, Coll Chem Engn, Chengdu 610065, Peoples R China
[2] Chengdu Univ Technol, Coll Mat & Chem & Chem Engn, Chengdu 610059, Peoples R China
[3] Henan Normal Univ, Sch Mat Sci & Engn, Xinxiang 453007, Henan, Peoples R China
[4] Qufu Normal Univ, Key Lab Life Organ Anal, Key Lab Pharmaceut Intermediates & Anal Nat Med, Sch Chem & Chem Engn, Qufu 273165, Shandong, Peoples R China
[5] Ruyuan Hec Technol Corp, Postdoctoral Mobile Res Ctr, Ruyuan 512000, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Composite electrolyte; Polyethylene oxide; Ionic conductivity; Interfacial impedance; Stable layer; Solid lithium metal battery; NI-RICH CATHODE; HIGH IONIC-CONDUCTIVITY; POLYMER ELECTROLYTE; HIGH-VOLTAGE; STABILITY; MEMBRANE; GRADIENT; SURFACE;
D O I
10.1016/j.jpowsour.2020.228461
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer-ceramic composite electrolyte is an effective solution for developing high-performance and flexible all-solid-state lithium metal battery. However, the key bottleneck of composite electrolyte including low ionic conductivity and high interfacial impedance have impeded their industrialization in solid electrolyte lithium batteries. Here we present a polymer-ceramic hybrid electrolyte (polyethylene oxide (PEO)/polyvinylidene fluoride (PVDF)/Li(6.4)La(3)Zr(1.4)ATa(0.6)O(12) (LLZTO)) is designed and modified by trace amount of liquid electrolyte. The addition of PVDF can not only reduce the crystallinity of PEO polymer, but also intensify the affinity between liquid electrolyte and the composite electrolyte. Furthermore, the interfacial modification can synchronously achieve the intimate connection, low interfacial impedance between the electrodes and solid electrolytes by forming the viscoelastic and stable layer. Due to the artful design, the solid-state battery deliver excellent performance. The Li symmetric cells show excellent interface stability without short circuits for 1000h. The assembled LiFePO4/Li cells exhibit a discharge capacity of 160.1 mA h g(-1) after 200 cycles at 0.4C and 143.3 mA h g(-1) at 5C. The composite solid electrolyte provides an effective and feasible methods to solve the interfacial issues and develop high performance solid lithium metal batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] High-performance Li6.4La3Zr1.4Ta0.6O12/Poly(ethylene oxide)/Succinonitrile composite electrolyte for solid-state lithium batteries
    Zha, Wenping
    Chen, Fei
    Yang, Dunjie
    Shen, Qiang
    Zhang, Lianmeng
    JOURNAL OF POWER SOURCES, 2018, 397 : 87 - 94
  • [2] Li6.4La3Zr1.4Ta0.6O12 Reinforced Polystyrene-Poly(ethylene oxide)-Poly (propylene oxide)-Poly(ethylene oxide)-Polystyrene pentablock copolymer-based composite solid electrolytes for solid-state lithium metal batteries
    Zhang, Xiaorong
    Sun, Yuxue
    Ma, Chunhui
    Guo, Nan
    Fan, Haiyang
    Liu, Jun
    Xie, Haiming
    JOURNAL OF POWER SOURCES, 2022, 542
  • [3] Poly(ethylene glycol) brush on Li6.4La3Zr1.4Ta0.6O12 towards intimate interfacial compatibility in composite polymer electrolyte for flexible all-solid-state lithium metal batteries
    Guo, Qingya
    Xu, Fanglin
    Shen, Lin
    Wang, Zhiyan
    Wang, Jia
    He, Hao
    Yao, Xiayin
    JOURNAL OF POWER SOURCES, 2021, 498
  • [4] Lowering the Interfacial Resistance in Li6.4La3Zr1.4Ta0.6O12| Poly(Ethylene Oxide) Composite Electrolytes
    Kuhnert, Eveline
    Ladenstein, Lukas
    Jodlbauer, Anna
    Slugovc, Christian
    Trimmel, Gregor
    Wilkening, H. Martin R.
    Rettenwander, Daniel
    CELL REPORTS PHYSICAL SCIENCE, 2020, 1 (10):
  • [5] A Three-Dimensional Electrospun Li6.4La3Zr1.4Ta0.6O12-Poly (Vinylidene Fluoride-Hexafluoropropylene) Gel Polymer Electrolyte for Rechargeable Solid-State Lithium Ion Batteries
    Wang, Donghuang
    Cai, Dan
    Zhong, Yu
    Jiang, Zhao
    Zhang, Shengzhao
    Xia, Xinhui
    Wang, Xiuli
    Tu, Jinagping
    FRONTIERS IN CHEMISTRY, 2021, 9
  • [6] Dual-salt effect on polyethylene oxide/Li6.4La3Zr1.4Ta0.6O12 composite electrolyte for solid-state lithium metal batteries with superior electrochemical performance
    Zhu, Fangyan
    Cheng, Samson Ho-Sum
    Xu, Yi
    Liao, Wenchao
    He, Kangqiang
    Chen, Dazhu
    Liao, Chengzhu
    Cheng, Xin
    Tang, Jiaoning
    Li, Robert K. Y.
    Liu, Chen
    COMPOSITES SCIENCE AND TECHNOLOGY, 2021, 210
  • [7] Cross-Linked Composite Solid Polymer Electrolyte Doped with Li6.4La3Zr1.4Ta0.6O12 for High Voltage Lithium Metal Batteries
    Meda, Lamartine
    Masafwa, Kutemwa
    Crockem, Ayssia N.
    Williams, Jere A.
    Beamon, Nila A.
    Adams, Jada I.
    Tunis, Jeremiah V.
    Yang, Lingyu
    Schaefer, Jennifer L.
    Wu, James J.
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (34) : 44791 - 44801
  • [8] 3D nanofiber framework based on polyacrylonitrile and siloxane-modified Li6.4La3Zr1.4Ta0.6O12 reinforced poly (ethylene oxide)-based composite solid electrolyte for lithium batteries
    Wang, Tao
    Liu, Xiaoyan
    Xie, Ling
    Ji, Haining
    Wang, Liping
    Niu, Xiaobin
    Gao, Jian
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 945
  • [9] Ultrathin Solid Composite Electrolyte Based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTFSI/Succinonitrile for High-Performance Solid-State Lithium Metal Batteries
    Wei, Tao
    Zhang, Zao-Hong
    Wang, Zhi-Meng
    Zhang, Qi
    Ye, Yu-sheng
    Lu, Jia-Hao
    Rahman, Zia Ur
    Zhang, Zhi-Wei
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (09) : 9428 - 9435
  • [10] Synergistic Coupling of Li6.4La3Zr1.4Ta0.6O12 and Fluoroethylene Carbonate Boosts Electrochemical Performances of Poly(Ethylene Oxide)-Based All-Solid-State Lithium Batteries
    Zhang, Lu
    Wang, Zhitao
    Zhou, Hu
    Li, Xiaogang
    Liu, Qian
    Wang, Ping
    Yuan, Aihua
    CHEMELECTROCHEM, 2022, 9 (17):