Monovalent counterion distributions at highly charged water interfaces: Proton-transfer and Poisson-Boltzmann theory

被引:31
|
作者
Bu, W [1 ]
Vaknin, D
Travesset, A
机构
[1] Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA
[2] Iowa State Univ Sci & Technol, Dept Phys & Astron, Ames, IA 50011 USA
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 06期
关键词
D O I
10.1103/PhysRevE.72.060501
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Surface sensitive synchrotron-x-ray scattering studies reveal the distributions of monovalent ions next to highly charged interfaces. A lipid phosphate (dihexadecyl hydrogen phosphate) was spread as a monolayer at the air-water interface, containing CsI at various concentrations. Using anomalous reflectivity off and at the L-3 Cs+ resonance, we provide spatial counterion distributions (Cs+) next to the negatively charged interface over a wide range of ionic concentrations. We argue that at low salt concentrations and for pure water the enhanced concentration of hydroniums H3O+ at the interface leads to proton transfer back to the phosphate group by a high contact potential, whereas high salt concentrations lower the contact potential resulting in proton release and increased surface charge density. The experimental ionic distributions are in excellent agreement with a renormalized-surface-charge Poisson-Boltzmann theory without fitting parameters or additional assumptions.
引用
收藏
页数:4
相关论文
共 47 条
  • [1] How accurate is Poisson-Boltzmann theory for monovalent ions near highly charged interfaces?
    Bu, Wei
    Vaknin, David
    Travesset, Alex
    LANGMUIR, 2006, 22 (13) : 5673 - 5681
  • [2] Counterion Condensation and Shape Within Poisson-Boltzmann Theory
    Lamm, Gene
    Pack, George R.
    BIOPOLYMERS, 2010, 93 (07) : 619 - 639
  • [3] Local dielectric constants and Poisson-Boltzmann calculations of DNA counterion distributions
    Lamm, G
    Pack, GR
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1997, 65 (06) : 1087 - 1093
  • [4] Modeling Microtubule Counterion Distributions and Conductivity Using the Poisson-Boltzmann Equation
    Eakins, Boden B.
    Patel, Sahil D.
    Kalra, Aarat P.
    Rezania, Vahid
    Shankar, Karthik
    Tuszynski, Jack A.
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2021, 8
  • [5] Poisson-Boltzmann theory for two parallel uniformly charged plates
    Xing, Xiangjun
    PHYSICAL REVIEW E, 2011, 83 (04):
  • [6] CYLINDRICAL POISSON-BOLTZMANN EQUATION FOR POLY-ELECTROLYTE SYSTEMS AND COUNTERION CONDENSATION THEORY
    CAMETTI, C
    DIBIASIO, A
    BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1988, 92 (10): : 1089 - 1094
  • [7] Ion-specific counterion condensation on charged peptides: Poisson-Boltzmann vs. atomistic simulations
    Heyda, Jan
    Dzubiella, Joachim
    SOFT MATTER, 2012, 8 (36) : 9338 - 9344
  • [8] Poisson-Boltzmann theory of charged colloids: limits of the cell model for salty suspensions
    Denton, A. R.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (36)
  • [9] Modified Poisson-Boltzmann theory for polyelectrolytes in monovalent salt solutions with finite-size ions
    Vahid, Hossein
    Scacchi, Alberto
    Yang, Xiang
    Ala-Nissila, Tapio
    Sammalkorpi, Maria
    JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (21):
  • [10] POLYELECTROLYTE THEORY .2. ACTIVITY-COEFFICIENTS IN POISSON-BOLTZMANN AND IN CONDENSATION THEORY - POLARIZABILITY OF THE COUNTERION SHEATH
    GUERON, M
    WEISBUCH, G
    JOURNAL OF PHYSICAL CHEMISTRY, 1979, 83 (15): : 1991 - 1998