Towards learning a semantic-consistent subspace for cross-modal retrieval

被引:5
|
作者
Xu, Meixiang [1 ,2 ]
Zhu, Zhenfeng [1 ,2 ]
Zhao, Yao [1 ,2 ]
机构
[1] Beijing Jiaotong Univ, Inst Informat Sci, Beijing, Peoples R China
[2] Beijing Key Lab Adv Informat Sci & Network Techno, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Cross-modal; Semantic-correlation; Subspace learning; Multi-label;
D O I
10.1007/s11042-018-6578-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A great many of approaches have been developed for cross-modal retrieval, among which subspace learning based ones dominate the landscape. Concerning whether using the semantic label information or not, subspace learning based approaches can be categorized into two paradigms, unsupervised and supervised. However, for multi-label cross-modal retrieval, supervised approaches just simply exploit multi-label information towards a discriminative subspace, without considering the correlations between multiple labels shared by multi-modalities, which often leads to an unsatisfactory retrieval performance. To address this issue, in this paper we propose a general framework, which jointly incorporates semantic correlations into subspace learning for multi-label cross-modal retrieval. By introducing the HSIC-based regularization term, the correlation information among multiple labels can be not only leveraged but also the consistency between the modality similarity from each modality is well preserved. Besides, based on the semantic-consistency projection, the semantic gap between the low-level feature space of each modality and the shared high-level semantic space can be balanced by a mid-level consistent one, where multi-label cross-modal retrieval can be performed effectively and efficiently. To solve the optimization problem, an effective iterative algorithm is designed, along with its convergence analysis theoretically and experimentally. Experimental results on real-world datasets have shown the superiority of the proposed method over several existing cross-modal subspace learning methods.
引用
收藏
页码:389 / 412
页数:24
相关论文
共 50 条
  • [21] Modal-adversarial Semantic Learning Network for Extendable Cross-modal Retrieval
    Xu, Xing
    Song, Jingkuan
    Lu, Huimin
    Yang, Yang
    Shen, Fumin
    Huang, Zi
    ICMR '18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2018, : 46 - 54
  • [22] Deep Semantic Mapping for Cross-Modal Retrieval
    Wang, Cheng
    Yang, Haojin
    Meinel, Christoph
    2015 IEEE 27TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2015), 2015, : 234 - 241
  • [23] Semantic-enhanced discriminative embedding learning for cross-modal retrieval
    Hao Pan
    Jun Huang
    International Journal of Multimedia Information Retrieval, 2022, 11 : 369 - 382
  • [24] Semantic-enhanced discriminative embedding learning for cross-modal retrieval
    Pan, Hao
    Huang, Jun
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2022, 11 (03) : 369 - 382
  • [25] Semantic consistency hashing for cross-modal retrieval
    Yao, Tao
    Kong, Xiangwei
    Fu, Haiyan
    Tian, Qi
    NEUROCOMPUTING, 2016, 193 : 250 - 259
  • [26] Analyzing semantic correlation for cross-modal retrieval
    Liang Xie
    Peng Pan
    Yansheng Lu
    Multimedia Systems, 2015, 21 : 525 - 539
  • [27] Analyzing semantic correlation for cross-modal retrieval
    Xie, Liang
    Pan, Peng
    Lu, Yansheng
    MULTIMEDIA SYSTEMS, 2015, 21 (06) : 525 - 539
  • [28] Learning Semantic Structure-preserved Embeddings for Cross-modal Retrieval
    Wu, Yiling
    Wang, Shuhui
    Huang, Qingming
    PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, : 825 - 833
  • [29] Collaborative Subspace Graph Hashing for Cross-modal Retrieval
    Zhang, Xiang
    Dong, Guohua
    Du, Yimo
    Wu, Chengkun
    Luo, Zhigang
    Yang, Canqun
    ICMR '18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2018, : 213 - 221
  • [30] An Orthogonal Subspace Decomposition Method for Cross-Modal Retrieval
    Zeng, Zhixiong
    Xu, Nan
    Mao, Wenji
    Zeng, Daniel
    IEEE INTELLIGENT SYSTEMS, 2022, 37 (03) : 45 - 53