Reduced-order modeling for cardiac electrophysiology. Application to parameter identification

被引:39
作者
Boulakia, M. [2 ]
Schenone, E. [1 ,2 ]
Gerbeau, J-F. [1 ]
机构
[1] INRIA Paris, F-78153 Le Chesnay, France
[2] Univ Paris 06, Jacques Louis Lions Lab UMR 7598, F-75005 Paris, France
关键词
cardiac electrophysiology; reduced-order model; inverse problem; POD; BIDOMAIN EQUATIONS; EXCITATION; DYNAMICS; TISSUE;
D O I
10.1002/cnm.2465
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A reduced-order model based on proper orthogonal decomposition (POD) is proposed for the bidomain equations of cardiac electrophysiology. Its accuracy is assessed through electrocardiograms in various configurations, including myocardium infarctions and long-time simulations. We show in particular that a restitution curve can efficiently be approximated by this approach. The reduced-order model is then used in an inverse problem solved by an evolutionary algorithm. Some attempts are presented to identify ionic parameters and infarction locations from synthetic electrocardiograms. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:727 / 744
页数:18
相关论文
共 35 条
[1]   Interpolation method for adapting reduced-order models and application to aeroelasticity [J].
Amsallem, David ;
Farhat, Charbel .
AIAA JOURNAL, 2008, 46 (07) :1803-1813
[2]  
[Anonymous], 2007, GECCO 07
[3]   Solving the cardiac bidomain equations for discontinuous conductivities [J].
Austin, Travis M. ;
Trew, Mark L. ;
Pullan, Andrew J. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (07) :1265-1272
[4]  
Boulakia M, 2011, LECT NOTES IN PRESS
[5]   Mathematical Modeling of Electrocardiograms: A Numerical Study [J].
Boulakia, Muriel ;
Cazeau, Serge ;
Fernandez, Miguel A. ;
Gerbeau, Jean-Frederic ;
Zemzemi, Nejib .
ANNALS OF BIOMEDICAL ENGINEERING, 2010, 38 (03) :1071-1097
[6]  
Cagnoni S, 2010, MED APPL GENETIC EVO
[7]   NONLINEAR MODEL REDUCTION VIA DISCRETE EMPIRICAL INTERPOLATION [J].
Chaturantabut, Saifon ;
Sorensen, Danny C. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (05) :2737-2764
[8]   Activation dynamics in anisotropic cardiac tissue via decoupling [J].
Clements, JC ;
Nenonen, J ;
Li, PKJ ;
Horácek, BM .
ANNALS OF BIOMEDICAL ENGINEERING, 2004, 32 (07) :984-990
[9]   A parallel solver for reaction-diffusion systems in computational electrocardiology [J].
Colli-Franzone, P ;
Pavarino, LF .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (06) :883-911
[10]   Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models [J].
Colli-Franzone, P ;
Pavarino, LF ;
Taccardi, B .
MATHEMATICAL BIOSCIENCES, 2005, 197 (01) :35-66