The physiology of developmental changes in BOLD functional imaging signals

被引:117
作者
Harris, Julia J. [1 ]
Reynell, Clare [1 ]
Attwell, David [1 ]
机构
[1] UCL, Dept Neurosci Physiol & Pharmacol, London WC1E 6BT, England
基金
英国医学研究理事会; 英国惠康基金; 欧洲研究理事会;
关键词
BOLD fMRI; Blood flow; Glutamate; Neurovascular coupling; Development; Energy;
D O I
10.1016/j.dcn.2011.04.001
中图分类号
B844 [发展心理学(人类心理学)];
学科分类号
040202 ;
摘要
BOLD fMRI (blood oxygenation level dependent functional magnetic resonance imaging) is increasingly used to detect developmental changes of human brain function that are hypothesized to underlie the maturation of cognitive processes. BOLD signals depend on neuronal activity increasing cerebral blood flow, and are reduced by neural oxygen consumption. Thus, developmental changes of BOLD signals may not reflect altered information processing if there are concomitant changes in neurovascular coupling (the mechanism by which neuronal activity increases blood flow) or neural energy use (and hence oxygen consumption). We review how BOLD signals are generated, and explain the signalling pathways which convert neuronal activity into increased blood flow. We then summarize in broad terms the developmental changes that the brain's neural circuitry undergoes during growth from childhood through adolescence to adulthood, and present the changes in neurovascular coupling mechanisms and energy use which occur over the same period. This information provides a framework for assessing whether the BOLD changes observed during human development reflect altered cognitive processing or changes in neurovascular coupling and energy use. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:199 / 216
页数:18
相关论文
共 227 条
[1]   Refining the roles of GABAergic signaling during neural circuit formation [J].
Akerman, Colin J. ;
Cline, Hollis T. .
TRENDS IN NEUROSCIENCES, 2007, 30 (08) :382-389
[2]   Cerebral blood flow increases evoked by electrical stimulation of rat cerebellar cortex: Relation to excitatory synaptic activity and nitric oxide synthesis [J].
Akgoren, N ;
Dalgaard, P ;
Lauritzen, M .
BRAIN RESEARCH, 1996, 710 (1-2) :204-214
[3]   IMPORTANCE OF NITRIC-OXIDE FOR LOCAL INCREASES OF BLOOD-FLOW IN RAT CEREBELLAR CORTEX DURING ELECTRICAL-STIMULATION [J].
AKGOREN, N ;
FABRICIUS, M ;
LAURITZEN, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (13) :5903-5907
[4]   Molecular characterization of an arachidonic acid epoxygenase in rat brain astrocytes [J].
Alkayed, NJ ;
Narayanan, J ;
Gebremedhin, D ;
Medhora, M ;
Roman, RJ ;
Harder, DR .
STROKE, 1996, 27 (05) :971-979
[5]   Energy-Efficient Action Potentials in Hippocampal Mossy Fibers [J].
Alle, Henrik ;
Roth, Arnd ;
Geiger, Joerg R. P. .
SCIENCE, 2009, 325 (5946) :1405-1408
[6]   Functional connectivity between simple cells and complex cells in cat striate cortex [J].
Alonso, JM ;
Martinez, LM .
NATURE NEUROSCIENCE, 1998, 1 (05) :395-403
[7]   METABOLISM OF ARACHIDONIC-ACID TO EPOXYEICOSATRIENOIC ACIDS, HYDROXYEICOSATETRAENOIC ACIDS, AND PROSTAGLANDINS IN CULTURED RAT HIPPOCAMPAL ASTROCYTES [J].
AMRUTHESH, SC ;
BOERSCHEL, MF ;
MCKINNEY, JS ;
WILLOUGHBY, KA ;
ELLIS, EF .
JOURNAL OF NEUROCHEMISTRY, 1993, 61 (01) :150-159
[8]   Neonatal auditory activation detected by functional magnetic resonance imaging [J].
Anderson, AW ;
Marois, R ;
Colson, ER ;
Peterson, BS ;
Duncan, CC ;
Ehrenkranz, RA ;
Schneider, KC ;
Gore, JC ;
Ment, LR .
MAGNETIC RESONANCE IMAGING, 2001, 19 (01) :1-5
[9]  
[Anonymous], 1967, REGIONAL DEV BRAIN E
[10]   Instantaneous Modulation of Gamma Oscillation Frequency by Balancing Excitation with Inhibition [J].
Atallah, Bassam V. ;
Scanziani, Massimo .
NEURON, 2009, 62 (04) :566-577