Minimal positive realizations for transfer functions with negative poles

被引:0
作者
Sun, Yuwei [1 ]
Yu, Wensheng [1 ,3 ]
Wang, Long [2 ]
机构
[1] Chinese Acad Sci, Inst Automat, Beijing 100080, Peoples R China
[2] Peking Univ, Ctr Syst & Control, Beijing 100871, Peoples R China
[3] Tsinghua Univ, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China
来源
2006 CHINESE CONTROL CONFERENCE, VOLS 1-5 | 2006年
关键词
positive linear systems; minimal realizations; positive decomposition;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we discuss the minimal positive realizations for nth-order rational transfer function of a discrete time-invariant linear single-input-single-output (SISO) system with negative poles. By the constructive method, the necessary and sufficient conditions are provided for these transfer functions to have a positive realization of dimension n. With the benefit of these results, an improvement is made on the existing results about the positive decomposition problem in positive system theory. Numerical examples are employed to validate the results.
引用
收藏
页码:2145 / +
页数:3
相关论文
共 21 条
[1]   Nonnegative realization of a linear system with nonnegative impulse response [J].
Anderson, BDO ;
Deistler, M ;
Farina, L ;
Benvenuti, L .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1996, 43 (02) :134-142
[2]   Tutorial on the positive realization problem [J].
Benvenuti, L ;
Farina, L .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (05) :651-664
[3]   The design of fiber-optic filters [J].
Benvenuti, L ;
Farina, L .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2001, 19 (09) :1366-1375
[4]   Filtering through combination of positive filters [J].
Benvenuti, L ;
Farina, L ;
Anderson, BDO .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1999, 46 (12) :1431-1440
[5]   An example of how positivity may force realizations of 'large' dimension [J].
Benvenuti, L ;
Farina, L .
SYSTEMS & CONTROL LETTERS, 1999, 36 (04) :261-266
[6]   Minimal positive realizations of transfer functions with positive real poles [J].
Benvenuti, L ;
Farina, L ;
Anderson, BDO ;
De Bruyne, F .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2000, 47 (09) :1370-1377
[7]  
Berman A., 1987, NONNEGATIVE MATRICES
[8]  
BLONDEL VD, 1999, OPEN PROBLEMS MATH S
[9]   On the existence of a positive realization [J].
Farina, L .
SYSTEMS & CONTROL LETTERS, 1996, 28 (04) :219-226
[10]  
FARINA L, 2000, PUR AP M-WI, P3