Hamilton-Jacobi equations for optimal control on junctions with unbounded running cost functions

被引:0
|
作者
Phan Trong Tien [1 ]
Tran Van Bang [2 ]
机构
[1] Quang Binh Univ, Dept Math, Dong Hoi, Vietnam
[2] Hanoi Pedag Univ 2, Dept Math, Vinh Phuc, Vietnam
关键词
D; N; Hao; Hamilton-Jacobi equations; viscosity solutions; optimal control; junctions; VISCOSITY SOLUTIONS;
D O I
10.1080/00036811.2019.1643012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper focuses on the viscosity solution approach to optimal control problems on junctions. Compared to Achdou et al. [Hamilton-Jacobi equations for optimal control on junctions and networks: ESAIM Control Optim. ESAIM Control Optim Calc Var. 2015;21(3):876-899] and Khang [Hamilton-Jacobi equations for optimal control on networks with entry or exit costs. ESAIM Control Optim Calc Var. 2018. (In press). EDP Sciences. ], we work on a less restrictive set of assumptions. We show that the value function is a unique viscosity solution of an associated Hamilton-Jacobi equation, and present some further properties of it. In addition, the viscosity solution method is used to establish a necessary and sufficient condition for an optimal control in a class of optimal control problems.
引用
收藏
页码:1397 / 1413
页数:17
相关论文
共 50 条
  • [1] HAMILTON-JACOBI EQUATIONS FOR OPTIMAL CONTROL ON JUNCTIONS AND NETWORKS
    Achdou, Yves
    Oudet, Salome
    Tchou, Nicoletta
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2015, 21 (03) : 876 - 899
  • [2] SEMICONCAVE FUNCTIONS, HAMILTON-JACOBI EQUATIONS, AND OPTIMAL CONTROL
    Maslowski, Bohdan
    MATHEMATICA BOHEMICA, 2007, 132 (02): : 220 - 220
  • [3] Semiconcave Functions, Hamilton-Jacobi equations and Optimal Control
    Pascu, Mihai
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 52 (05): : 592 - 594
  • [4] Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control
    Pascu, Mihai
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 52 (01): : 121 - 122
  • [5] Hamilton-Jacobi equations for optimal control on multidimensional junctions with entry costs
    Dao, Manh-Khang
    Djehiche, Boualem
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 27 (02):
  • [8] HAMILTON-JACOBI EQUATIONS FOR OPTIMAL CONTROL ON JUNCTIONS AND NETWORKS (vol 21, pg 876, 2015)
    Achdou, Yves
    Oudet, Salome
    Tchou, Nicoletta
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2016, 22 (02) : 539 - 542
  • [9] Extended Hamilton-Jacobi characterization of value functions in optimal control
    Galbraith, GN
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (01) : 281 - 305
  • [10] Hamilton-Jacobi reachability analysis with running cost function
    Liao, Wei
    Liang, Tao-Tao
    Wei, Xiao-Hui
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2022, 39 (06): : 986 - 994