H∞ Chaos Synchronization for Nonlinear Bloch Equations

被引:2
作者
Ahn, Choon Ki [1 ]
机构
[1] Wonkwang Univ, Fac Div Elect & Control Engn, Iksan 570749, South Korea
关键词
H-infinity synchronization; Chaotic behavior; Nonlinear Bloch equations; Linear matrix inequality (LMI); Lyapunov theory; ANTI-SYNCHRONIZATION; GENERALIZED SYNCHRONIZATION; ADAPTIVE SYNCHRONIZATION; FEEDBACK; SYSTEMS;
D O I
10.3938/jkps.55.2295
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we propose a new H-infinity synchronization scheme for chaotic behavior in nonlinear Bloch equations with external disturbance. Based on the Lyapunov theory and the linear matrix inequality (LMI) approach, the H-infinity synchronization controller is presented to not only guarantee stable synchronization but also reduce the effect of external disturbance to an H-infinity norm constraint. The proposed controller can be obtained by solving a convex optimization problem represented by an LMI. A numerical example is given to demonstrate the effectiveness of the proposed synchronization scheme.
引用
收藏
页码:L2295 / L2300
页数:6
相关论文
共 30 条
[1]   Chaotic solutions of the feedback driven Bloch equations [J].
Abergel, D .
PHYSICS LETTERS A, 2002, 302 (01) :17-22
[2]   Synchronization of two Lorenz systems using active control [J].
Bai, EW ;
Lonngren, KE .
CHAOS SOLITONS & FRACTALS, 1997, 8 (01) :51-58
[3]   Sequential synchronization of two Lorenz systems using active control [J].
Bai, EW ;
Lonngren, KE .
CHAOS SOLITONS & FRACTALS, 2000, 11 (07) :1041-1044
[4]  
Boyd S., 1994, LINEAR MATRIX INEQUA
[5]  
Chen G., 1998, CHAOS ORDER
[6]  
Gahinet P., 1995, LMI Control Toolbox
[7]   Bifurcation continuation, chaos and chaos control in nonlinear Bloch system [J].
Ghosh, Dibakar ;
Chowdhury, A. Roy ;
Saha, Papri .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (08) :1461-1471
[8]   H∞ synchronization of chaotic systems using output feedback control design [J].
Hou, Yi-You ;
Liao, Teh-Lu ;
Yan, Jun-Juh .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 379 (01) :81-89
[9]   Adaptive control for anti-synchronization of Chua's chaotic system [J].
Hu, J ;
Chen, SH ;
Chen, L .
PHYSICS LETTERS A, 2005, 339 (06) :455-460
[10]   Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems [J].
Kocarev, L ;
Parlitz, U .
PHYSICAL REVIEW LETTERS, 1996, 76 (11) :1816-1819