Polo: an open-source graphical user interface for crystallization screening

被引:5
作者
Holleman, Ethan T. [1 ]
Duguid, Erica [1 ,2 ]
Keefe, Lisa J. [1 ,2 ]
Bowman, Sarah E. J. [1 ,3 ]
机构
[1] Hauptman Woodward Med Res Inst, 700 Ellicott St, Buffalo, NY 14203 USA
[2] Argonne Natl Lab, Adv Photon Source, Ind Macromol Crystallog Assoc, Collaborat Access Team, 9700 South Cass Ave, Lemont, IL 60439 USA
[3] Univ Buffalo, Jacobs Sch Med & Biomed Sci, Dept Biochem, Buffalo, NY 14023 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
crystallization; crystal imaging; machine learning; open-source graphical user interfaces;
D O I
10.1107/S1600576721000108
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polo is a Python-based graphical user interface designed to streamline viewing and analysis of images to monitor crystal growth, with a specific target to enable users of the High-Throughput Crystallization Screening Center at Hauptman-Woodward Medical Research Institute (HWI) to efficiently inspect their crystallization experiments. Polo aims to increase efficiency, reducing time spent manually reviewing crystallization images, and to improve the potential of identifying positive crystallization conditions. Polo provides a streamlined one-click graphical interface for the Machine Recognition of Crystallization Outcomes (MARCO) convolutional neural network for automated image classification, as well as powerful tools to view and score crystallization images, to compare crystallization conditions, and to facilitate collaborative review of crystallization screening results. Crystallization images need not have been captured at HWI to utilize Polo's basic functionality. Polo is free to use and modify for both academic and commercial use under the terms of the copyleft GNU General Public License v3.0.
引用
收藏
页码:673 / 679
页数:7
相关论文
共 19 条
[1]  
[Anonymous], 2018, AUTOMATING EVALUATIO
[2]   Classification of crystallization outcomes using deep convolutional neural networks [J].
Bruno, Andrew E. ;
Charbonneau, Patrick ;
Newman, Janet ;
Snell, Edward H. ;
So, David R. ;
Vanhoucke, Vincent ;
Watkins, Christopher J. ;
Williams, Shawn ;
Wilson, Julie .
PLOS ONE, 2018, 13 (06)
[3]   It's all in the crystals ... [J].
Derewenda, Zygmunt S. .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2011, 67 :243-248
[4]   A drunken search in crystallization space [J].
Fazio, Vincent J. ;
Peat, Thomas S. ;
Newman, Janet .
ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2014, 70 :1303-1311
[5]   Modeling the SHG activities of diverse protein crystals [J].
Haupert, Levi M. ;
DeWalt, Emma L. ;
Simpson, Garth J. .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2012, 68 :1513-1521
[6]   Screening of protein crystallization trials by second order nonlinear optical imaging of chiral crystals (SONICC) [J].
Haupert, Levi M. ;
Simpson, Garth J. .
METHODS, 2011, 55 (04) :379-386
[7]  
Hung J., 2014, MED IMAGING 2014 IMA, p90341X
[8]  
Lesburg C., 2020, POLO WEB INTERFACE M
[9]   Image-based crystal detection: a machine-learning approach [J].
Liu, Roy ;
Freund, Yoav ;
Spraggon, Glen .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2008, 64 :1187-1195
[10]   Lessons from high-throughput protein crystallization screening: 10 years of practical experience [J].
Luft, Joseph R. ;
Snell, Edward H. ;
DeTitta, George T. .
EXPERT OPINION ON DRUG DISCOVERY, 2011, 6 (05) :465-480