From gas-phase to liquid water chemical reactions: The F + (H2O)n, n=1-4 systems

被引:6
作者
Li, Guoliang [1 ,2 ,3 ]
Xie, Yaoming
Schaefer, Henry F., III [3 ]
机构
[1] S China Normal Univ, Ctr Computat Quantum Chem, MOE Key Lab Theoret Chem Environm, Guangzhou 510006, Guangdong, Peoples R China
[2] S China Normal Univ, Sch Chem & Environm, Guangzhou Key Lab Mat Energy Convers & Storage, Guangzhou 510006, Guangdong, Peoples R China
[3] Univ Georgia, Ctr Computat Quantum Chem, Athens, GA 30602 USA
关键词
TRANSITION-STATE; REACTION DYNAMICS; REACTION PATHS; TRIMER; RESONANCES; ENERGY; TETRAMER; CLUSTERS; F+H2O; SPECTROSCOPY;
D O I
10.1016/j.cplett.2016.01.014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The systematic study of the growth of water clusters is of interest. The potential energy profiles for the reactions F + (H2O)(n), (n = 1-4) have been investigated using the CCSD(T) method. Final energetics have been evaluated with the CCSD(T)/cc-pVQZ method. All the stationary points have been located. Structurally, the stationary points on the F + (H2O)(n). potential energy surfaces are related. Energetically, the water tetramer reaction F + (H2 0)4, water trimer reaction F + (H2O)(3), and water dimer reaction F + (H2O)(2) are barrierless, while the water monomer reaction F + H2O has a similar to 2 kcal/mol barrier. (C) 2016 Published by Elsevier B.V.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [21] Ab initio determination of the ionization potentials of water clusters (H2O)n (n=2-6)
    Segarra-Marti, Javier
    Merchan, Manuela
    Roca-Sanjuan, Daniel
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (24)
  • [22] Transition states for hydride-water (H-)(H2O)n clusters, n=2-6, 20
    Anick, David J.
    Leung, Kevin
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2009, 916 (1-3): : 61 - 71
  • [23] Gas-phase complexes: Possible prereactive gateways for reactions of halogens with NH3, H2O, and H2S
    Burger, H
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1997, 36 (07): : 718 - 721
  • [24] The Importance of NO+(H2O)4 in the Conversion of NO+(H2O)n to H3O+(H2O)n: I. Kinetics Measurements and Statistical Rate Modeling
    Eyet, Nicole
    Shuman, Nicholas S.
    Viggiano, Albert A.
    Troe, Juergen
    Relph, Rachael A.
    Steele, Ryan P.
    Johnson, Mark A.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (26) : 7582 - 7590
  • [25] Infrared absorption of methanol-water clusters (CH3OH)n(H2O), n=1-4, recorded with the VUV-ionization/IR-depletion technique
    Lee, Yu-Fang
    Kelterer, Anne-Marie
    Matisz, Gergely
    Kunsagi-Mate, Sandor
    Chung, Chao-Yu
    Lee, Yuan-Pern
    JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (14)
  • [26] Solvent Effects on the Conformational Preferences of Serotonin: Serotonin-(H2O)n, n=1,2
    LeGreve, Tracy A.
    James, William H., III
    Zwier, Timothy S.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (02) : 399 - 410
  • [27] Theoretical study of microscopic solvation of NaOH in water: NaOH(H2O)n, n=1-10
    Roy, Debesh R.
    CHEMICAL PHYSICS, 2012, 407 : 92 - 96
  • [28] Structural transitions and dipole moment of water clusters (H2O)n=4-100
    Gelman-Constantin, Julian
    Carignano, Marcelo A.
    Szleifer, Igal
    Marceca, Ernesto J.
    Corti, Horacio R.
    JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (02)
  • [29] Water's Role in Reshaping a Macrocycle's Binding Pocket: Infrared and Ultraviolet Spectroscopy of Benzo-15-crown-5-(H2O)n and 4′-aminobenzo-15-crown-5-(H2O)n, n=1, 2
    Shubert, V. Alvin
    Mueller, Christian W.
    Zwier, Timothy S.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (28) : 8067 - 8079
  • [30] Are there any magic numbers for water nanodroplets, (H2O)n, in the range 36 ≤ n ≤ 50?
    Kazachenko, Sergey
    Thakkar, Ajit J.
    MOLECULAR PHYSICS, 2010, 108 (17) : 2187 - 2193