Application of metal-organic frameworks in VPSA technology for CO2 capture

被引:12
|
作者
Majchrzak-Kuceba, Izabela [1 ]
Wawrzynczak, Dariusz [1 ]
Sciubidlo, Aleksandra [1 ]
机构
[1] Czestochowa Tech Univ, Fac Infrastruct & Environm, Inst Adv Energy Technol, Dabrowskiego St 73, PL-42201 Czestochowa, Poland
关键词
CO2; capture; MOFs; VPSA installation; CARBON-DIOXIDE; FLUE-GAS; ADSORPTION TECHNOLOGY; SEPARATION; MECHANISM; ZEOLITES; MIL-53; MOFS; BTC;
D O I
10.1016/j.fuel.2019.115773
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
One of the technologies that may find application in the reduction of CO2 emissions from both energy and other industrial plants is the adsorption method. Among all adsorption techniques, the Vacuum Pressure Swing Adsorption (VPSA), seems to be the most effective for the separation of CO2 from flue gases, because flue gas is at low pressure. The development of the adsorption method in recent years has been favoured by the intensive development of efficient adsorbents, including metal-organic frameworks (MOFs). Owing to their unique sorption properties and high selectivity, these compounds provide a chance for a considerable reduction of the adsorbent volume, should CO2 be needed to be removed from a huge volume of flue gas. In order to evaluate the possibility of using MOFs, besides zeolites and activated carbon, for CO2 adsorption in large-scale VPSA units, investigations of these compounds in bench-scale and pilot VPSA adsorption units are necessary. In this paper, its authors have carried out investigations into the use of MIL-53(Al) in a bench-scale VPSA installation.. The tests of CO2 separation from a simulated combustion gas mixture on a MIL-53(Al) and on activated carbon and zeolite 13X, respectively, have been carried out in a two-column VPSA installation, which enables adsorbent regeneration in a vacuum. The study also analyzes the effects of adsorption/regeneration time and desorption pressure on CO2 purity and CO2 recovery. The presented results provide new insights into the behaviour of MOFs in the VPSA installation.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Advanced strategies in Metal-Organic Frameworks for CO2 Capture and Separation
    Usman, Muhammad
    Iqbal, Naseem
    Noor, Tayyaba
    Zaman, Neelam
    Asghar, Aisha
    Abdelnaby, Mahmoud M.
    Galadima, Ahmad
    Helal, Aasif
    CHEMICAL RECORD, 2022, 22 (07)
  • [2] Research on Metal-organic Frameworks for CO2 Capture
    Xin, Chunling
    Wang, Suqing
    Yan, Yongmei
    PROCEEDINGS OF THE 2017 7TH INTERNATIONAL CONFERENCE ON MECHATRONICS, COMPUTER AND EDUCATION INFORMATIONIZATION (MCEI 2017), 2017, 75 : 151 - 154
  • [3] A comparison of the CO2 capture characteristics of zeolites and metal-organic frameworks
    Krishna, Rajamani
    van Baten, Jasper M.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2012, 87 : 120 - 126
  • [4] Synthesis strategies of metal-organic frameworks for CO2 2 capture
    Sun, Meng
    Wang, Xiaokang
    Gao, Fei
    Xu, Mingming
    Fan, Weidong
    Xu, Ben
    Sun, Daofeng
    MICROSTRUCTURES, 2023, 3 (04):
  • [5] Applications of Porphyrin Metal-Organic Frameworks in CO2 Capture and Conversion
    Chen Zhiyao
    Liu Jiewei
    Cui Hao
    Zhang Li
    Su Chengyong
    ACTA CHIMICA SINICA, 2019, 77 (03) : 242 - 252
  • [6] Theoretical studies of CO2 adsorption mechanism on linkers of metal-organic frameworks
    Liu, Yang
    Liu, Jing
    Chang, Ming
    Zheng, Chuguang
    FUEL, 2012, 95 (01) : 521 - 527
  • [7] Effects of ionic liquid dispersion in metal-organic frameworks and covalent organic frameworks on CO2 capture: A computational study
    Xue, Wenjuan
    Li, Zhengjie
    Huang, Hongliang
    Yang, Qingyuan
    Liu, Dahuan
    Xu, Qing
    Zhong, Chongli
    CHEMICAL ENGINEERING SCIENCE, 2016, 140 : 1 - 9
  • [8] Screening the Effect of Water Vapour on Gas Adsorption Performance: Application to CO2 Capture from Flue Gas in Metal-Organic Frameworks
    Chanut, Nicolas
    Bourrelly, Sandrine
    Kuchta, Bogdan
    Serre, Christian
    Chang, Jong-San
    Wright, Paul A.
    Llewellyn, Philip L.
    CHEMSUSCHEM, 2017, 10 (07) : 1543 - 1553
  • [9] Effects of functional groups for CO2 capture using metal organic frameworks
    Gu, Chenkai
    Liu, Yang
    Wang, Weizhou
    Liu, Jing
    Hu, Jianbo
    FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2021, 15 (02) : 437 - 449
  • [10] Metal-organic frameworks for CO2 photoreduction
    Zhang, Lei
    Zhang, Junqing
    FRONTIERS IN ENERGY, 2019, 13 (02) : 221 - 250