CHROMOSPHERE TO 1 au SIMULATION OF THE 2011 MARCH 7th EVENT: A COMPREHENSIVE STUDY OF CORONAL MASS EJECTION PROPAGATION

被引:76
作者
Jin, M. [1 ]
Manchester, W. B. [2 ]
van der Holst, B. [2 ]
Sokolov, I. [2 ]
Toth, G. [2 ]
Vourlidas, A. [3 ]
de Koning, C. A. [4 ]
Gombosi, T. I. [2 ]
机构
[1] Lockheed Martin Solar & Astrophys Lab, Palo Alto, CA 94304 USA
[2] Univ Michigan, Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA
[3] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA
[4] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
interplanetary medium; magnetohydrodynamics (MHD); methods: numerical; solar wind; Sun: corona; Sun: coronal mass ejections (CMEs); SOLAR-WIND MODEL; 3-DIMENSIONAL MHD SIMULATION; ULTRAVIOLET IMAGING TELESCOPE; SPACE WEATHER EVENT; MAGNETIC-FLUX ROPE; HIGH MACH-NUMBER; CONE-MODEL; PARTICLE-ACCELERATION; NUMERICAL-SIMULATION; MAGNETOHYDRODYNAMIC SIMULATIONS;
D O I
10.3847/1538-4357/834/2/172
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We perform and analyze the results of a global magnetohydrodynamic simulation of the fast coronal mass ejection (CME) that occurred on 2011 March 7. The simulation is made using the newly developed Alfven Wave Solar Model (AWSoM), which describes the background solar wind starting from the upper chromosphere and extends to 24 Re. Coupling AWSoM to an inner heliosphere model with the Space Weather Modeling Framework extends the total domain beyond the orbit of Earth. Physical processes included in the model are multi-species thermodynamics, electron heat conduction (both collisional and collisionless formulations), optically thin radiative cooling, and Alfven-wave turbulence that accelerates and heats the solar wind. The Alfven-wave description is physically self-consistent, including non-Wentzel-Kramers-Brillouin reflection and physics-based apportioning of turbulent dissipative heating to both electrons and protons. Within this model, we initiate the CME by using the Gibson-Low analytical flux rope model and follow its evolution for days, in which time it propagates beyond STEREO A. A detailed comparison study is performed using remote as well as in situ observations. Although the flux rope structure is not compared directly due to lack of relevant ejecta observation at 1 au in this event, our results show that the new model can reproduce many of the observed features near the Sun (e.g., CME-driven extreme ultraviolet [EUV] waves, deflection of the flux rope from the coronal hole, "double-front" in the white light images) and in the heliosphere (e.g., shock propagation direction, shock properties at STEREO A).
引用
收藏
页数:18
相关论文
共 116 条
[1]   A model for solar coronal mass ejections [J].
Antiochos, SK ;
DeVore, CR ;
Klimchuk, JA .
ASTROPHYSICAL JOURNAL, 1999, 510 (01) :485-493
[2]  
BURLAGA LF, 1971, SPACE SCI REV, V12, P600, DOI 10.1007/BF00173345
[3]   INCORPORATING KINETIC PHYSICS INTO A TWO-FLUID SOLAR-WIND MODEL WITH TEMPERATURE ANISOTROPY AND LOW-FREQUENCY ALFVEN-WAVE TURBULENCE [J].
Chandran, Benjamin D. G. ;
Dennis, Timothy J. ;
Quataert, Eliot ;
Bale, Stuart D. .
ASTROPHYSICAL JOURNAL, 2011, 743 (02)
[4]   A full view of EIT waves [J].
Chen, PF ;
Fang, C ;
Shibata, K .
ASTROPHYSICAL JOURNAL, 2005, 622 (02) :1202-1210
[5]   A fifth-order finite difference scheme for hyperbolic equations on block-adaptive curvilinear grids [J].
Chen, Yuxi ;
Toth, Gabor ;
Gombosi, Tamas I. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 305 :604-621
[6]   THE DRIVER OF CORONAL MASS EJECTIONS IN THE LOW CORONA: A FLUX ROPE [J].
Cheng, X. ;
Zhang, J. ;
Ding, M. D. ;
Liu, Y. ;
Poomvises, W. .
ASTROPHYSICAL JOURNAL, 2013, 763 (01)
[7]   A semiempirical magnetohydrodynamical model of the solar wind [J].
Cohen, O. ;
Sokolov, I. V. ;
Roussev, I. I. ;
Arge, C. N. ;
Manchester, W. B. ;
Gombosi, T. I. ;
Frazin, R. A. ;
Park, H. ;
Butala, M. D. ;
Kamalabadi, F. ;
Velli, M. .
ASTROPHYSICAL JOURNAL, 2007, 654 (02) :L163-L166
[8]   NUMERICAL SIMULATION OF AN EUV CORONAL WAVE BASED ON THE 2009 FEBRUARY 13 CME EVENT OBSERVED BY STEREO [J].
Cohen, Ofer ;
Attrill, Gemma D. R. ;
Manchester, Ward B. ;
Wills-Davey, Meredith J. .
ASTROPHYSICAL JOURNAL, 2009, 705 (01) :587-602
[9]   Polarimetric localization: A new tool for calculating the CME speed and direction of propagation in near-real time [J].
de Koning, Curt A. ;
Pizzo, V. J. .
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2011, 9
[10]   Geometric Localization of CMEs in 3D Space Using STEREO Beacon Data: First Results [J].
de Koning, Curt A. ;
Pizzo, V. J. ;
Biesecker, D. A. .
SOLAR PHYSICS, 2009, 256 (1-2) :167-181