Hydrogen production of the hyperthermophilic eubacterium, Thermotoga neapolitana under N2 sparging condition

被引:69
作者
Nguyen, Tam-Anh D. [1 ]
Han, Se Jong [1 ]
Kim, Jun Pyo [1 ]
Kim, Mi Sun [2 ]
Sim, Sang Jun [1 ]
机构
[1] Sungkyunkwan Univ, Dept Chem Engn, Suwon 440746, South Korea
[2] Korea Inst Energy Res, Bioenergy Res Ctr, Taejon 305343, South Korea
关键词
Hydrogen production; Gas sparging; Hyperthermophilic eubacteria; Thermotoga neapolitana; CALDICELLULOSIRUPTOR-SACCHAROLYTICUS; GLUCOSE; MARITIMA; H-2;
D O I
10.1016/j.biortech.2009.03.041
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Gas sparging was found to be a useful technique to reduce hydrogen partial pressure in the liquid phase to enhance the hydrogen yields of strictly anaerobically fermentative bacteria. The effect of nitrogen (N-2) sparging on hydrogen yield was investigated in sterile and non-sterile conditions using a pure strain of the hyperthermophilic eubacteria, Thermotoga neapolitana with glucose or xylose as a carbon source. The maximum hydrogen accumulations reached 41% of the gaseous mixtures after 30-40 h. Two applications of N-2 sparging after the H-2 content in the headspace reached the maximum levels gave an increase of H-2 production by 78% from 1.82 to 3.24 mol H-2/mol glucose and by 56% from 1.41 to 2.20 mol H-2/mol xylose. This result suggested that the removal of the produced H-2 from the gas headspace of the limited-volume. closed culture vial when it achieves the maximum level of H-2 tolerance of the bacterium is a necessary technique to improve its H-2 yield. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:S38 / S41
页数:4
相关论文
共 17 条
[1]   A NEW SULFUR-REDUCING, EXTREMELY THERMOPHILIC EUBACTERIUM FROM A SUBMARINE THERMAL VENT [J].
BELKIN, S ;
WIRSEN, CO ;
JANNASCH, HW .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1986, 51 (06) :1180-1185
[2]  
EBERTS TJ, 1979, CLIN CHEM, V25, P1440
[3]   Hydrogen production in anaerobic and microaerobic Thermotoga neapolitana [J].
Eriksen, Niels T. ;
Nielsen, Thomas M. ;
Iversen, Niels .
BIOTECHNOLOGY LETTERS, 2008, 30 (01) :103-109
[4]   Biological hydrogen production; fundamentals and limiting processes [J].
Hallenbeck, PC ;
Benemann, JR .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (11-12) :1185-1193
[5]   Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora [J].
Hussy, I ;
Hawkes, FR ;
Dinsdale, R ;
Hawkes, DL .
BIOTECHNOLOGY AND BIOENGINEERING, 2003, 84 (06) :619-626
[6]   THERMOTOGA-NEAPOLITANA SP-NOV OF THE EXTREMELY THERMOPHILIC, EUBACTERIAL GENUS THERMOTOGA [J].
JANNASCH, HW ;
HUBER, R ;
BELKIN, S ;
STETTER, KO .
ARCHIVES OF MICROBIOLOGY, 1988, 150 (01) :103-104
[7]   A highly efficient method for liquid and solid cultivation of the anaerobic hyperthermophilic eubacterium Thermotoga maritima [J].
Jiang, Yu ;
Zhou, Qing ;
Wu, Kang ;
Li, Xiang-Qian ;
Shao, Wei-Lan .
FEMS MICROBIOLOGY LETTERS, 2006, 259 (02) :254-259
[8]   Biohydrogen production: prospects and limitations to practical application [J].
Levin, DB ;
Pitt, L ;
Love, M .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (02) :173-185
[9]  
Majizat A, 1997, WATER SCI TECHNOL, V36, P279, DOI 10.2166/wst.1997.0601
[10]   Enhancement of hydrogen production from glucose by nitrogen gas sparging [J].
Mizuno, O ;
Dinsdale, R ;
Hawkes, FR ;
Hawkes, DL ;
Noike, T .
BIORESOURCE TECHNOLOGY, 2000, 73 (01) :59-65