Finite volume element method for two-dimensional fractional subdiffusion problems

被引:45
作者
Karaa, Samir [1 ]
Mustapha, Kassem [2 ]
Pani, Amiya K. [3 ]
机构
[1] Sultan Qaboos Univ, Dept Math & Stat, Muscat 123, Oman
[2] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[3] Indian Inst Technol, Ind Math Grp, Dept Math, Bombay 400076, Maharashtra, India
关键词
fractional diffusion; finite volume element; discontinuous Galerkin method; error analysis; DIFFUSION EQUATION; DIFFERENCE METHOD; DISCRETIZATION;
D O I
10.1093/imanum/drw010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, a semidiscrete spatial finite volume (FV) method is proposed and analyzed for approximating solutions of anomalous subdiffusion equations involving a temporal fractional derivative of order a. (0, 1) in a two-dimensional convex domain. An optimal error estimate in the L-infinity(L-2)-norm is shown to hold. A superconvergence result is proved, and as a consequence, it is proved that a quasi-optimal order of convergence in the L-infinity(L-infinity)-norm holds. We also consider a fully discrete scheme that employs a FV method in space and a piecewise linear discontinuous Galerkin method to discretize in time. It is further shown that the convergence rate is of order h(2) + k(1 vertical bar a), where h denotes the spatial discretization parameter and k represents the temporal discretization parameter. Numerical experiments indicate optimal convergence rates in both time and space, and also illustrate that the imposed regularity assumptions are pessimistic.
引用
收藏
页码:945 / 964
页数:20
相关论文
共 28 条
[1]   FIELD-STUDY OF DISPERSION IN A HETEROGENEOUS AQUIFER .2. SPATIAL MOMENTS ANALYSIS [J].
ADAMS, EE ;
GELHAR, LW .
WATER RESOURCES RESEARCH, 1992, 28 (12) :3293-3307
[2]   SOME ERROR-ESTIMATES FOR THE BOX METHOD [J].
BANK, RE ;
ROSE, DJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :777-787
[3]  
CAI ZQ, 1991, NUMER MATH, V58, P713
[4]   Error estimates for a finite volume element method for parabolic equations in convex polygonal domains [J].
Chatzipantelidis, P ;
Lazarov, RD ;
Thomée, V .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (05) :650-674
[5]  
Chen CM, 2012, MATH COMPUT, V81, P345, DOI 10.1090/S0025-5718-2011-02447-6
[6]  
Chou SH, 2000, MATH COMPUT, V69, P103, DOI 10.1090/S0025-5718-99-01192-8
[7]  
CIARLET P. G., 2002, Classics in Appl. Math., V40
[8]   A hybridizable discontinuous Galerkin method for fractional diffusion problems [J].
Cockburn, Bernardo ;
Mustapha, Kassem .
NUMERISCHE MATHEMATIK, 2015, 130 (02) :293-314
[9]   Convolution quadrature time discretization of fractional diffusion-wave equations [J].
Cuesta, E ;
Lubich, C ;
Palencia, C .
MATHEMATICS OF COMPUTATION, 2006, 75 (254) :673-696
[10]   Compact finite difference method for the fractional diffusion equation [J].
Cui, Mingrong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (20) :7792-7804