COMPACT MODULI SPACES OF DEL PEZZO SURFACES AND KAHLER-EINSTEIN METRICS

被引:0
作者
Odaka, Yuji [1 ]
Spotti, Cristiano [2 ]
Sun, Song [3 ]
机构
[1] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
[2] Ctr Math Sci, DPMMS, Wilberforce Rd, Cambridge CB3 0WB, England
[3] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
关键词
COMPLEX-SURFACES; STABILITY; MANIFOLDS; GIT; CLASSIFICATION; DEGENERATIONS; CONSTRUCTION; INVARIANTS; CURVATURE; ORBIFOLDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the Gromov-Hausdorff compactification of the moduli space of Kahler-Einstein Del Pezzo surfaces in each degree agrees with certain algebro-geometric compactification. In particular, this recovers Tian's theorem on the existence of Kahler-Einstein metrics on smooth Del Pezzo surfaces and classifies all the degenerations of such metrics. The proof is based on a combination of both algebraic and differential geometric techniques.
引用
收藏
页码:127 / 172
页数:46
相关论文
共 78 条
[1]  
Alexeev Valery, 2006, MSJ MEMOIRS, V15
[2]   On the local quotient structure of Artin stacks [J].
Alper, Jarod .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (09) :1576-1591
[3]  
Anderson MT., 1989, J. Am. Math. Soc, V2, P455, DOI [10.1090/S0894-0347-1989-0999661-1, DOI 10.1090/S0894-0347-1989-0999661-1, DOI 10.2307/1990939]
[4]  
[Anonymous], ARXIV12056214
[5]  
[Anonymous], 1995, Sugaku, V47, P125
[6]  
[Anonymous], 1957, Nagoya Math. J.
[7]  
[Anonymous], ARXIV08124093
[8]  
[Anonymous], 2012, Metric and differential geometry
[9]  
[Anonymous], 1994, Comm. Anal. Geom.
[10]  
Artebani M, 2009, NAGOYA MATH J, V196, P1