Broadband and wide-angle solar absorber for the visible and near-infrared frequencies

被引:56
作者
Wu, Jun [1 ]
Sun, Yasong [2 ,3 ]
Wu, Biyuan [4 ,5 ]
Sun, Chunlei [6 ]
Wu, Xiaohu [5 ]
机构
[1] Anhui Polytech Univ, Coll Elect Engn, Wuhu 241000, Peoples R China
[2] Northwestern Polytech Univ, Basic Res Ctr, Sch Power & Energy, Xian 710064, Shaanxi, Peoples R China
[3] Northwestern Polytech Univ, Ctr Computat Phys & Energy Sci, Yangtze River Delta Res Inst NPU, Taicang 215400, Jiangsu, Peoples R China
[4] Xian Univ Technol, Sch Automat & Informat Engn, Xian 710048, Shaanxi, Peoples R China
[5] Shandong Inst Adv Technol, Jinan 250100, Peoples R China
[6] Qingdao Univ Sci & Technol, Coll Electromech Engn, Qingdao 266061, Peoples R China
关键词
Metamaterials; Broadband absorption; Solar cells; Phase change material; HEXAGONAL BORON-NITRIDE; OPTICAL ABSORBER; METAMATERIAL ABSORBER; PERFECT ABSORPTION; SURFACE;
D O I
10.1016/j.solener.2022.04.032
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A polarization-insensitive broadband and wide-angle solar absorber in the visible to near-infrared regions is proposed and studied. The proposed absorber is in the form of an iron square ring array separated from an iron reflector by a dielectric spacer and a phase change material (Ge2Sb2Te5) layer. About 98% averaged absorption in the spectral range of 380-2000 nm is realized. The electromagnetic filed intensity distribution at several selected absorption peaks is studied to provide physical understanding behind the broadband absorption effect. Besides, the high absorption performance remains stable within a large viewing angle and the designed absorber shows certain dimensional tolerance, which decreases the fabrication complexity and cost and should be attractive for practical applications. Moreover, the potential applications of the proposed scheme on the solar energy harvesting are also illustrated in the last. It is believed that the proposed absorbers should find potential applications in solar energy capturing and conversion, thermo-photovoltaic devices and thermal emitters.
引用
收藏
页码:78 / 83
页数:6
相关论文
共 40 条
[1]  
[Anonymous], AIR MASS 15 SPECTRA
[2]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[3]   Metasurface Broadband Solar Absorber [J].
Azad, Abul K. ;
Kort-Kamp, Wilton J. M. ;
Sykora, Milan ;
Weisse-Bernstein, Nina R. ;
Luk, Ting S. ;
Taylor, Antoinette J. ;
Dalvit, Diego A. R. ;
Chen, Hou-Tong .
SCIENTIFIC REPORTS, 2016, 6
[4]   Wideband mid-infrared thermal emitter based on stacked nanocavity metasurfaces [J].
Cao, Tun ;
Lian, Meng ;
Liu, Kuan ;
Lou, Xianchao ;
Guo, Yaoming ;
Guo, Dongming .
INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2022, 4 (01)
[5]   Broadband Polarization-Independent Perfect Absorber Using a Phase-Change Metamaterial at Visible Frequencies [J].
Cao, Tun ;
Wei, Chen-wei ;
Simpson, Robert E. ;
Zhang, Lei ;
Cryan, Martin J. .
SCIENTIFIC REPORTS, 2014, 4
[6]   Chalcogenide Active Photonics [J].
Chew, Li Tian ;
Dong, Weiling ;
Lu, Li ;
Zhou, Xilin ;
Behera, Jitendra ;
Liu, Hailong ;
Sreekanth, Kandammathe V. ;
Mao, Libang ;
Cao, Tun ;
Yang, Joel ;
Simpson, Robert E. .
ACTIVE PHOTONIC PLATFORMS IX, 2017, 10345
[7]   Broadband visible-light absorber via hybridization of propagating surface plasmon [J].
Cong, Jiawei ;
Zhou, Zhiqiang ;
Yun, Binfeng ;
Lv, Liu ;
Yao, Hongbing ;
Fu, Yonghong ;
Ren, Naifei .
OPTICS LETTERS, 2016, 41 (09) :1965-1968
[8]   GLOBAL OPTIMIZATION OF STATISTICAL FUNCTIONS WITH SIMULATED ANNEALING [J].
GOFFE, WL ;
FERRIER, GD ;
ROGERS, J .
JOURNAL OF ECONOMETRICS, 1994, 60 (1-2) :65-99
[9]   Enhanced infrared detectors using resonant structures combined with thin type-II superlattice absorbers [J].
Goldflam, M. D. ;
Kadlec, E. A. ;
Olson, B. V. ;
Klem, J. F. ;
Hawkins, S. D. ;
Parameswaran, S. ;
Coon, W. T. ;
Keeler, G. A. ;
Fortune, T. R. ;
Tauke-Pedretti, A. ;
Wendt, J. R. ;
Shaner, E. A. ;
Davids, P. S. ;
Kim, J. K. ;
Peters, D. W. .
APPLIED PHYSICS LETTERS, 2016, 109 (25)
[10]   A novel wideband optical absorber based on all-metal 2D gradient nanostructures [J].
Gong, Jianhao ;
Yang, Fulong ;
Zhang, Xiaoping .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (45)