Modelling of tungsten sputtering by argon particle bombardment on a fuzzy surface

被引:7
作者
Liu, D. H. [1 ]
Dai, S. Y. [1 ]
Nishijima, D. [2 ]
Yang, K. R. [1 ]
Chen, J. Y. [1 ]
Xu, Y. [3 ]
Wang, D. Z. [1 ]
机构
[1] Dalian Univ Technol, Sch Phys, Key Lab Mat Modificat Laser Ion & Electron Beams, Minist Educ, Dalian 116024, Peoples R China
[2] Univ Calif San Diego, Ctr Energy Res, 9500 Gilman Dr, La Jolla, CA 92093 USA
[3] Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Peoples R China
基金
中国国家自然科学基金;
关键词
Tungsten; Fuzz; Porosity; Kinetic Monte Carlo; GROWTH;
D O I
10.1016/j.nme.2022.101205
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The physical sputtering yield of a tungsten (W) fuzzy surface by argon (Ar) plasma bombardment was measured in the linear plasma device PISCES-B, which showed an evident reduction in the physical sputtering yield on the fuzzy surfaces in comparison with a smooth surface (Nishijima D. et al 2011 J. Nucl. Mater. 415 S96). In order to reproduce and explain this phenomenon, dedicated modelling of W physical sputtering on smooth and fuzzy surfaces by Ar bombardment has been performed with the three-dimensional kinetic Monte Carlo code SUROFUZZ. According to a measured porosity distribution, W fuzzy surface morphology is constructed in our simulation, on which physical sputtering, trapping and escaping of W atoms under Ar bombardment are simulated with SURO-FUZZ. Detailed comparison between simulation and experiment reveals that microscopic structures of W fuzzy nanofibers play a critical role in the trapping of W atoms and hence in the resulting physical sputtering yield. For the same porosity distribution, the simulated physical sputtering yields of W fuzzy surface morphology with shallow valleys are higher than the measured values, while W fuzzy surface structure with deep and narrow slots results in a lower physical sputtering yield compared to the experimental data. The good agreement between simulation and experiment can be attained for W fuzzy surface morphology with deep and relatively open recessions.
引用
收藏
页数:8
相关论文
共 36 条
  • [11] The impact of surface morphology on the erosion of metallic surfaces - Modelling with the 3D Monte-Carlo code ERO2.0
    Eksaeva, A.
    Borodin, D.
    Romazanov, J.
    Kirschner, A.
    Kreter, A.
    Goths, B.
    Rasinski, M.
    Unterberg, B.
    Brezinsek, S.
    Linsmeier, Ch.
    Vassallo, E.
    Passoni, M.
    Dellasega, D.
    Sala, M.
    Romeo, F.
    Borodkina, I.
    [J]. NUCLEAR MATERIALS AND ENERGY, 2021, 27
  • [12] Measurements of the energy distribution of W atoms sputtered by low energy Ar ions using high-resolution Doppler spectroscopy
    Ertmer, S.
    Marchuk, O.
    Dickheuer, S.
    Brezinsek, S.
    Boerner, P.
    Schmitz, J.
    Kreter, A.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (01)
  • [13] Hammond K.D, 2019, NUCL FUSION, V59
  • [14] Fractality of self-grown nanostructured tungsten by He plasma irradiation
    Kajita, Shin
    Tsuji, Yoshiyuki
    Ohno, Noriyasu
    [J]. PHYSICS LETTERS A, 2014, 378 (34) : 2533 - 2538
  • [15] TEM analysis of high temperature annealed W nanostructure surfaces
    Kajita, Shin
    Yoshida, Naoaki
    Yoshihara, Reiko
    Ohno, Noriyasu
    Yokochi, Takanori
    Tokitani, Masayuki
    Takamura, Shuichi
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2012, 421 (1-3) : 22 - 27
  • [16] Formation process of tungsten nanostructure by the exposure to helium plasma under fusion relevant plasma conditions
    Kajita, Shin
    Sakaguchi, Wataru
    Ohno, Noriyasu
    Yoshida, Naoaki
    Saeki, Tsubasa
    [J]. NUCLEAR FUSION, 2009, 49 (09)
  • [17] Molecular dynamics simulations of ballistic He penetration into W fuzz
    Klaver, T. P. C.
    Nordlund, K.
    Morgan, T. W.
    Westerhof, E.
    Thijsse, B. J.
    van de Sanden, M. C. M.
    [J]. NUCLEAR FUSION, 2016, 56 (12)
  • [18] On helium cluster dynamics in tungsten plasma facing components of fusion devices
    Krasheninnikov, S. I.
    Faney, T.
    Wirth, B. D.
    [J]. NUCLEAR FUSION, 2014, 54 (07)
  • [19] Loop punching and bubble rupture causing surface roughening - A model for W fuzz growth
    Lasa, A.
    Tahtinen, S. K.
    Nordlund, K.
    [J]. EPL, 2014, 105 (02)
  • [20] Modelling of hydrogen atoms reflection from an annealed tungsten fuzzy surfaces
    Liu, D. H.
    Dai, S. Y.
    Wada, M.
    Yang, K. R.
    Chen, J. Y.
    Liu, D. P.
    Cherenda, N.
    Wang, D. Z.
    [J]. NUCLEAR MATERIALS AND ENERGY, 2021, 26