Modelling of tungsten sputtering by argon particle bombardment on a fuzzy surface

被引:7
作者
Liu, D. H. [1 ]
Dai, S. Y. [1 ]
Nishijima, D. [2 ]
Yang, K. R. [1 ]
Chen, J. Y. [1 ]
Xu, Y. [3 ]
Wang, D. Z. [1 ]
机构
[1] Dalian Univ Technol, Sch Phys, Key Lab Mat Modificat Laser Ion & Electron Beams, Minist Educ, Dalian 116024, Peoples R China
[2] Univ Calif San Diego, Ctr Energy Res, 9500 Gilman Dr, La Jolla, CA 92093 USA
[3] Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Peoples R China
基金
中国国家自然科学基金;
关键词
Tungsten; Fuzz; Porosity; Kinetic Monte Carlo; GROWTH;
D O I
10.1016/j.nme.2022.101205
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The physical sputtering yield of a tungsten (W) fuzzy surface by argon (Ar) plasma bombardment was measured in the linear plasma device PISCES-B, which showed an evident reduction in the physical sputtering yield on the fuzzy surfaces in comparison with a smooth surface (Nishijima D. et al 2011 J. Nucl. Mater. 415 S96). In order to reproduce and explain this phenomenon, dedicated modelling of W physical sputtering on smooth and fuzzy surfaces by Ar bombardment has been performed with the three-dimensional kinetic Monte Carlo code SUROFUZZ. According to a measured porosity distribution, W fuzzy surface morphology is constructed in our simulation, on which physical sputtering, trapping and escaping of W atoms under Ar bombardment are simulated with SURO-FUZZ. Detailed comparison between simulation and experiment reveals that microscopic structures of W fuzzy nanofibers play a critical role in the trapping of W atoms and hence in the resulting physical sputtering yield. For the same porosity distribution, the simulated physical sputtering yields of W fuzzy surface morphology with shallow valleys are higher than the measured values, while W fuzzy surface structure with deep and narrow slots results in a lower physical sputtering yield compared to the experimental data. The good agreement between simulation and experiment can be attained for W fuzzy surface morphology with deep and relatively open recessions.
引用
收藏
页数:8
相关论文
共 36 条
  • [1] Formation of helium induced nanostructure 'fuzz' on various tungsten grades
    Baldwin, M. J.
    Doerner, R. P.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2010, 404 (03) : 165 - 173
  • [2] Helium induced nanoscopic morphology on tungsten under fusion relevant plasma conditions
    Baldwin, M. J.
    Doerner, R. P.
    [J]. NUCLEAR FUSION, 2008, 48 (03)
  • [3] The effects of high fluence mixed-species (deuterium, helium, beryllium) plasma interactions with tungsten
    Baldwin, M. J.
    Doerner, R. P.
    Nishijima, D.
    Tokunaga, K.
    Ueda, Y.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2009, 390-91 : 886 - 890
  • [4] The evolution of He nanobubbles in tungsten under fusion-relevant He ion irradiation conditions
    Bi, Zhenhua
    Liu, Dongping
    Zhang, Yang
    Liu, Lu
    Xia, Yang
    Hong, Yi
    Fan, Hongyu
    Benstetter, Guenther
    Lei, Guangjiu
    Yan, Longwen
    [J]. NUCLEAR FUSION, 2019, 59 (08)
  • [5] Dai S.Y, 2020, NUCL MATER ENERGY, V26
  • [6] Modelling of surface evolution of rough surface on divertor target in fusion devices
    Dai, Shuyu
    Liu, Shengguang
    Sun, Jizhong
    Kirschner, A.
    Kawamura, G.
    Tskhakaya, D.
    Ding, Rui
    Luo, Guangnan
    Wang, Dezhen
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2015, 463 : 372 - 376
  • [7] Modelling of surface roughness effects on impurity erosion and deposition in TEXTOR with a code package SURO/ERO/SDPIC
    Dai, Shuyu
    Kirschner, A.
    Sun, Jizhong
    Tskhakaya, D.
    Wang, Dezhen
    [J]. NUCLEAR FUSION, 2014, 54 (12)
  • [8] Helium effects on tungsten under fusion-relevant plasma loading conditions
    De Temmerman, G.
    Bystrov, K.
    Doerner, R. P.
    Marot, L.
    Wright, G. M.
    Woller, K. B.
    Whyte, D. G.
    Zielinski, J. J.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2013, 438 : S78 - S83
  • [9] Spectroscopic study of hydrogen reflection at modified tungsten surface
    Doi, Kenta
    Lee, Heun Tae
    Tanaka, Nozomi
    Yamaoka, Hitoshi
    Ueda, Yoshio
    Wada, Motoi
    [J]. FUSION ENGINEERING AND DESIGN, 2018, 136 : 100 - 105
  • [10] Sputtering yields
    Eckstein, W.
    [J]. VACUUM, 2008, 82 (09) : 930 - 934