The regulation of protein phosphorylation

被引:223
作者
Johnson, Louise N. [1 ,2 ]
机构
[1] Univ Oxford, Dept Biochem, Lab Mol Biophys, Oxford OX1 3QU, England
[2] Diamond Light Source, Chiltron OX11 0DE, Oxon, England
基金
英国惠康基金; 英国医学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
cyclin-dependent kinase 9-cyclin T (CDK9-cyclin T); flavopiridol; glycogen phosphorylase; phosphorylation; protein kinase; protein kinase inhibitor; CHRONIC LYMPHOCYTIC-LEUKEMIA; STRUCTURE-BASED DESIGN; CRYSTAL-STRUCTURE; STRUCTURAL BASIS; KINASE INHIBITORS; SUBSTRATE RECOGNITION; MAP KINASE; GLYCOGEN-PHOSPHORYLASE; MONOSIGA-BREVICOLLIS; TYROSINE KINASE;
D O I
10.1042/BST0370627
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Phosphorylation plays essential roles in nearly every aspect of cell life. Protein kinases regulate signalling pathways and cellular processes that mediate metabolism, transcription, cell-cycle progression, differentiation, cytoskeleton arrangement and cell movement, apoptosis, intercellular communication, and neuronal and immunological functions. Protein kinases share a conserved catalytic domain, which catalyses the transfer of the gamma-phosphate of ATP to a serine, threonine or tyiosine residue in protein substrates. The kinase can exist in an active or inactive state regulated by a variety of mechanisms in different kinases that include control by phosphorylation, regulation by additional domains that may target other molecules, binding and regulation by additional subunits, and control by protein-protein association. This Novartis Medal Lecture Was delivered at a meeting on protein evolution celebrating the 200th anniversary of Charles Darwin's birth. I begin with a summary of current observations from protein sequences of kinase phylogeny. I then review the structural consequences of protein phosphorylation using our work on glycogen phosphorylase to illustrate one of the more dramatic consequences of phosphorylation. Regulation of protein phosphorylation is frequently disrupted in the diseased state, and protein kinases have become high-profile targets for drug development. Finally, I consider recent advances on protein kinases as drug targets and describe some of our recent work with CDK9 (cyclin-dependent kinase 9)-cyclin T, a regulator of transcription.
引用
收藏
页码:627 / 641
页数:15
相关论文
共 82 条
[1]  
Antz C, 1999, NAT STRUCT BIOL, V6, P146
[2]   The selectivity of protein kinase inhibitors: a further update [J].
Bain, Jenny ;
Plater, Lorna ;
Elliott, Matt ;
Shpiro, Natalia ;
Hastie, C. James ;
Mclauchlan, Hilary ;
Klevernic, Iva ;
Arthur, J. Simon C. ;
Alessi, Dario R. ;
Cohen, Philip .
BIOCHEMICAL JOURNAL, 2007, 408 :297-315
[3]   The structure and mechanism of protein phosphatases: Insights into catalysis and regulation [J].
Barford, D ;
Das, AK ;
Egloff, MP .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 1998, 27 :133-164
[4]   STRUCTURAL MECHANISM FOR GLYCOGEN-PHOSPHORYLASE CONTROL BY PHOSPHORYLATION AND AMP [J].
BARFORD, D ;
HU, SH ;
JOHNSON, LN .
JOURNAL OF MOLECULAR BIOLOGY, 1991, 218 (01) :233-260
[5]   The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation [J].
Baumli, Sonja ;
Lolli, Graziano ;
Lowe, Edward D. ;
Troiani, Sonia ;
Rusconi, Luisa ;
Bullock, Alex N. ;
Debreczeni, Judit E. ;
Knapp, Stefan ;
Johnson, Louise N. .
EMBO JOURNAL, 2008, 27 (13) :1907-1918
[6]   Three-dimensional structure of the Stat3β homodimer bound to DNA [J].
Becker, S ;
Groner, B ;
Müller, CW .
NATURE, 1998, 394 (6689) :145-151
[7]   Cdk2 knockout mice are viable [J].
Berthet, C ;
Aleem, E ;
Coppola, V ;
Tessarollo, L ;
Kaldis, P .
CURRENT BIOLOGY, 2003, 13 (20) :1775-1785
[8]   Cyclin B and cyclin A confer different substrate recognition properties on CDK2 [J].
Brown, Nick R. ;
Lowe, Ed D. ;
Petri, Ed ;
Skamnaki, Vicky ;
Antrobus, Robin ;
Johnson, Louise N. .
CELL CYCLE, 2007, 6 (11) :1350-1359
[9]   The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases [J].
Brown, NR ;
Noble, MEM ;
Endicott, JA ;
Johnson, LN .
NATURE CELL BIOLOGY, 1999, 1 (07) :438-443
[10]   THE CRYSTAL-STRUCTURE OF CYCLIN-A [J].
BROWN, NR ;
NOBLE, MEM ;
ENDICOTT, JA ;
GARMAN, EF ;
WAKATSUKI, S ;
MITCHELL, E ;
RASMUSSEN, B ;
HUNT, T ;
JOHNSON, LN .
STRUCTURE, 1995, 3 (11) :1235-1247