Tuning the thermoelectric properties of metallo-porphyrins

被引:42
作者
Al-Galiby, Qusiy H. [1 ,2 ]
Sadeghi, Hatef [1 ]
Algharagholy, Laith A. [1 ,3 ,4 ]
Grace, Iain [1 ]
Lambert, Colin [1 ]
机构
[1] Univ Lancaster, Quantum Technol Ctr, Lancaster LA1 4YB, England
[2] Al Qadisiyah Univ, Dept Phys, Diwaniyah 58002, Iraq
[3] Sumer Univ, Coll Basic Educ, Al Refayee 64001, Thi Qar, Iraq
[4] Al Qadisiyah Univ, Coll Comp Sci & Math, Al Qadisiyah 58002, Diwaniyah, Iraq
基金
英国工程与自然科学研究理事会;
关键词
MOLECULAR JUNCTIONS; WASTE HEAT; THERMOPOWER; CONDUCTANCE; TRANSPORT; GRAPHENE; PERFORMANCE; TRANSITION; DEPENDENCE; CHEMISTRY;
D O I
10.1039/c5nr06966a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We investigated the thermoelectric properties of metalloporphyrins connected by thiol anchor groups to gold electrodes. By varying the transition metal-centre over the family Mn, Co, Ni, Cu, Fe, and Zn we are able to tune the molecular energy levels relative to the Fermi energy of the electrodes. The resulting single-molecule room-temperature thermopowers range from almost zero for Co and Cu centres, to +80 mu V K-1 and +230 mu V K-1 for Ni and Zn respectively. In contrast, the thermopowers with Mn(II) or Fe(II) metal centres are negative and lie in the range -280 to -260 mu V K-1. Complexing these with a counter anion to form Fe(III) and Mn(III) changes both the sign and magnitude of their thermopowers to + 218 and + 95 respectively. The room-temperature power factors of Mn(II), Mn(III), Fe(III), Zn and Fe(II) porphyrins are predicted to be 5.9 x 10(-5) W m(-1) K-2, 5.4 x 10(-4) W m(-1) K-2, 9.5 x 10(-4) W m(-1) K-2, 1.6 x 10(-4) W m(-1) K-2 and 2.3 x 10(-4) W m(-1) K-2 respectively, which makes these attractive materials for molecular-scale thermoelectric devices.
引用
收藏
页码:2428 / 2433
页数:6
相关论文
共 52 条
[1]  
[Anonymous], 1826, ANN PHYS-NEW YORK, DOI DOI 10.1002/ANDP.18260820302
[2]   Probing the chemistry of molecular heterojunctions using thermoelectricity [J].
Baheti, Kanhayalal ;
Malen, Jonathan A. ;
Doak, Peter ;
Reddy, Pramod ;
Jang, Sung-Yeon ;
Tilley, T. Don ;
Majumdar, Arun ;
Segalman, Rachel A. .
NANO LETTERS, 2008, 8 (02) :715-719
[3]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[4]   Supramolecular Chemistry of Metalloporphyrins [J].
Beletskaya, Irina ;
Tyurin, Vladimir S. ;
Tsivadze, Aslan Yu. ;
Guilard, Roger ;
Stern, Christine .
CHEMICAL REVIEWS, 2009, 109 (05) :1659-1713
[5]   Ab initio study of the thermopower of biphenyl-based single-molecule junctions [J].
Buerkle, M. ;
Zotti, L. A. ;
Viljas, J. K. ;
Vonlanthen, D. ;
Mishchenko, A. ;
Wandlowski, T. ;
Mayor, M. ;
Schoen, G. ;
Pauly, F. .
PHYSICAL REVIEW B, 2012, 86 (11)
[6]   APPARATUS FOR THERMOPOWER MEASUREMENTS ON ORGANIC CONDUCTORS [J].
CHAIKIN, PM ;
KWAK, JF .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1975, 46 (02) :218-220
[7]   An available method exploiting the waste heat in a proton exchange membrane fuel cell system [J].
Chen, Xiaohang ;
Chen, Liwei ;
Guo, Juncheng ;
Chen, Jincan .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (10) :6099-6104
[8]   Thermoelectric properties of mesoscopic superconductors [J].
Claughton, NR ;
Lambert, CJ .
PHYSICAL REVIEW B, 1996, 53 (10) :6605-6612
[9]   SPECTRA OF THE METALLO-DERIVATIVES OF ALPHA,BETA,GAMMA,OMEGA-TETRAPHENYLPORPHINE [J].
DOROUGH, GD ;
MILLER, JR ;
HUENNEKENS, FM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1951, 73 (09) :4315-4320
[10]   Engineering the Thermopower of C60 Molecular Junctions [J].
Evangeli, Charalambos ;
Gillemot, Katalin ;
Leary, Edmund ;
Teresa Gonzalez, M. ;
Rubio-Bollinger, Gabino ;
Lambert, Colin J. ;
Agrait, Nicolas .
NANO LETTERS, 2013, 13 (05) :2141-2145