An Optimisation-Based Approach to Mesh Smoothing: Reformulation and Extensions

被引:6
作者
Hamam, Yskandar [1 ]
Couprie, Michel [2 ]
机构
[1] Tshwane Univ Technol, FSATIE, Pretoria, South Africa
[2] Univ Paris Est, ESIEE, Lab Informat Gaspard Monge, Champs Sur Marne, France
来源
GRAPH-BASED REPRESENTATIONS IN PATTERN RECOGNITION, PROCEEDINGS | 2009年 / 5534卷
关键词
REGULARIZATION;
D O I
10.1007/978-3-642-02124-4_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Laplacian approach, when applied to mesh smoothing leads in many cases to convergence problems. It also leads to shrinking of the Mesh. In this work, the, authors reformulate the mesh smoothing problem as an optimisation one. This approach gives the means of controlling the steps to assure monotonic convergence. Furthermore, a new optimisation function is proposed that reduces the shrinking effect of the method. Examples are given to illustrate the properties of the proposed approches.
引用
收藏
页码:31 / +
页数:3
相关论文
共 27 条
[1]   Optimal point placement for mesh smoothing [J].
Amenta, N ;
Bern, M ;
Eppstein, D .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1999, 30 (02) :302-322
[2]   Mesh smoothing using a posteriori error estimates [J].
Bank, RE ;
Smith, RK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (03) :979-997
[3]  
Bougleux S, 2007, LECT NOTES COMPUT SC, V4485, P128
[4]  
CHEN Z, 2003, 12 INT MESH ROUNDTAB
[5]  
Desbrun M, 1999, COMP GRAPH, P317, DOI 10.1145/311535.311576
[6]  
Djidjev H., 2000, Proceedings of the 9th International Meshing Roundtable, P395
[7]  
Fan R. K, 1997, Spectral Graph Theory
[8]   LAPLACIAN SMOOTHING AND DELAUNAY TRIANGULATIONS [J].
FIELD, DA .
COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1988, 4 (06) :709-712
[9]   Bilateral mesh denoising [J].
Fleishman, S ;
Drori, I ;
Cohen-Or, D .
ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (03) :950-953
[10]   A parallel algorithm for mesh smoothing [J].
Freitag, L ;
Jones, M ;
Plassmann, P .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (06) :2023-2040