The Cauchy-Dirichlet problem for a general class of parabolic equations

被引:35
作者
Baroni, Paolo [1 ]
Lindfors, Casimir [2 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80125 Naples, Italy
[2] Aalto Univ, Dept Math & Syst Anal, POB 11100, Aalto 00076, Finland
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2017年 / 34卷 / 03期
基金
芬兰科学院;
关键词
Degenerate/singular parabolic equations; Cauchy-Dirichlet problem; Lipschitz regularity; General growth conditions; GRADIENT REGULARITY; GROWTH-CONDITIONS; DIFFERENTIAL-EQUATIONS; SYSTEMS; BOUNDARY; BOUNDEDNESS; MINIMIZERS;
D O I
10.1016/j.anihpc.2016.03.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove regularity results such as interior Lipschitz regularity and boundary continuity for the Cauchy-Dirichlet problem associated to a class of parabolic equations inspired by the evolutionary p-Laplacian, but extending it at a wide scale. We employ a regularization technique of viscosity-type that we find interesting in itself. (C) 2016 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:593 / 624
页数:32
相关论文
共 36 条
[1]   Regularity results for parabolic systems related to a class of non-Newtonian fluids [J].
Acerbi, E ;
Mingione, G ;
Seregin, GA .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (01) :25-60
[2]   Gradient estimates for a class of parabolic systems [J].
Acerbi, Emilio ;
Mingione, Giuseppe .
DUKE MATHEMATICAL JOURNAL, 2007, 136 (02) :285-320
[3]  
[Anonymous], 102 U JYVASK
[4]  
[Anonymous], 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
[5]  
[Anonymous], TRANSL MATH MONOGR
[6]   Riesz potential estimates for a general class of quasilinear equations [J].
Baroni, Paolo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 53 (3-4) :803-846
[7]  
Bers L., 1958, SURV APPL MATH, V3
[8]  
Burczak J., PREPRINT
[9]  
CHEN YZ, 1992, ARCH RATION MECH AN, V118, P257
[10]  
Cianchi A, 1997, COMMUN PART DIFF EQ, V22, P1629