Retrieval of sea ice thickness using global navigation satellite system reflected signals

被引:2
作者
Gao, Hongxing [1 ]
Yang, Dongkai [1 ]
Wang, Qiang [1 ]
机构
[1] Beihang Univ, Elect Informat Engn Coll, 37 Xueyuan Rd, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Global navigation satellite system reflected signal; sea ice thickness; intensity ratio; empirical model; synthetic-aperture radar; REFLECTOMETRY; LEVEL; BAY;
D O I
10.1177/0020294019858218
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The aim of this paper is to develop a model which can be used to retrieve sea ice thickness based on global navigation satellite system reflected signals at a shore-based platform. First, the method calculates the intensity ratio of the reflected signal and the direct signal of the global navigation satellite system satellite, which is the ratio of the power of the reflected signal to the power of the direct signal. Then, the information of the sea ice thickness is obtained according to the empirical model of the sea ice thickness. In order to verify the effectiveness of the method, the global navigation satellite system reflected signals were observed in the experiment in the Bayu enclosure of Liaoning Province, China. The results show that the sea ice thickness of the global navigation satellite system reflected signal is 10-20 cm, which is consistent with the synthetic-aperture radar observation.
引用
收藏
页码:1131 / 1136
页数:6
相关论文
共 25 条
[1]   Retrieval of Significant Wave Height and Mean Sea Surface Level Using the GNSS-R Interference Pattern Technique: Results From a Three-Month Field Campaign [J].
Alonso-Arroyo, Alberto ;
Camps, Adriano ;
Park, Hyuk ;
Pascual, Daniel ;
Onrubia, Raul ;
Martin, Francisco .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (06) :3198-3209
[2]   Sea ice roughness from airborne LIDAR profiles [J].
Belmonte Rivas, Maria ;
Maslanik, James A. ;
Sonntag, John G. ;
Axelrad, Penina .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (11) :3032-3037
[3]  
Cheng Peng, 2014, Advances in Polar Science, V25, P1
[4]  
Chew C., 2018, SCI REPORTS, V8, P1
[5]   Phase Altimetry With Dual Polarization GNSS-R Over Sea Ice [J].
Fabra, Fran ;
Cardellach, Estel ;
Rius, Antonio ;
Ribo, Serni ;
Oliveras, Santi ;
Nogues-Correig, Oleguer ;
Rivas, Maria Belmonte ;
Semmling, Maximilian ;
D'Addio, Salvatore .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (06) :2112-2121
[6]   Snow measurement by GPS interferometric reflectometry: an evaluation at Niwot Ridge, Colorado [J].
Gutmann, Ethan D. ;
Larson, Kristine M. ;
Williams, Mark W. ;
Nievinski, Felipe G. ;
Zavorotny, Valery .
HYDROLOGICAL PROCESSES, 2012, 26 (19) :2951-2961
[7]  
Kaleschke L, 2015, INT GEOSCI REMOTE SE, P5232, DOI 10.1109/IGARSS.2015.7327014
[8]  
Komjathy A., 2000, P IEEE INT GEOSC REM, V7, P2855
[9]   Incidence Angle Correction of SAR Sea Ice Data Based on Locally Linear Mapping [J].
Lang, Wenhui ;
Zhang, Pan ;
Wu, Jie ;
Shen, Yang ;
Yang, Xuezhi .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (06) :3188-3199
[10]   Lake Level and Surface Topography Measured With Spaceborne GNSS-Reflectometry From CYGNSS Mission: Example for the Lake Qinghai [J].
Li, Weiqiang ;
Cardellach, Estel ;
Fabra, Fran ;
Ribo, Serni ;
Rius, Antonio .
GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (24) :13332-13341