Improved Bandgap-Voltage Offset in InGaAs/InAlGaAs Quantum Well Solar Cells

被引:0
作者
Bailey, C. G. [1 ]
Lumb, M. P. [1 ,2 ]
Forbes, D. V. [3 ]
Yakes, M. K. [1 ]
Gonzalez, M. [1 ,4 ]
Hubbard, S. M. [3 ]
Hoheisel, R. [1 ,2 ]
Hirst, L. C. [1 ]
Tischler, J. G. [1 ]
Vurgaftman, I. [1 ]
Meyer, J. R. [1 ]
Walters, R. J. [1 ]
机构
[1] US Naval Res Lab, Washington, DC 20375 USA
[2] George Washington Univ, Washington, DC USA
[3] Rochester Inst Technol, NanoPower Res Labs, Rochester, NY 14623 USA
[4] Sotera Def Solut, Annapolis Jct, MD 20701 USA
来源
2013 39TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), PT 2 | 2013年
关键词
InAlGaAs; InGaAs; quantum wells; solar; InP;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In recent years, the implementation of bandgap engineering techniques for solar energy conversion has been demonstrated with exciting results, using both quantum wells (QWs) and quantum dots. Here, the exploitation of a fully lattice-matched QW / barrier system is introduced as an attractive new possibility for this type of device. Photovoltaic characterization is performed and relevant solar cell parameters are reported. For these devices, sixteen layers of 5 nm InGaAs QWs / 10 nm InAlGaAs barriers were embedded into the i-region of a 1.0 eV InAlGaAs solar cell, and the results compared to a 1.0 eV InAlGaAs control solar cell. One-sun J(sc) is enhanced in the QW cell by 5.3% compared to that of the InAlGaAs control device, while the open circuit voltage is reduced by 153 mV compared to the control. External quantum efficiency measurements reveal a 1.6 mA/cm(2) gain from the QW absorption region.
引用
收藏
页码:32 / 37
页数:6
相关论文
共 19 条
[1]  
Bailey C. G., 2012, J PHOTOVOLTAICS, V2
[2]  
Bailey C. G., 2013, APPL PHYS L IN PRESS
[3]   A NEW APPROACH TO HIGH-EFFICIENCY MULTI-BAND-GAP SOLAR-CELLS [J].
BARNHAM, KWJ ;
DUGGAN, G .
JOURNAL OF APPLIED PHYSICS, 1990, 67 (07) :3490-3493
[4]  
Chan N. L. A., 2012, J PHOTOVOLTAICS, V2
[5]   Strain-balanced GaAsP/InGaAs quantum well solar cells [J].
Ekins-Daukes, NJ ;
Barnham, KWJ ;
Connolly, JP ;
Roberts, JS ;
Clark, JC ;
Hill, G ;
Mazzer, M .
APPLIED PHYSICS LETTERS, 1999, 75 (26) :4195-4197
[6]   Modeling and Analysis of Multijunction Solar Cells [J].
Gonzalez, Maria ;
Chan, Ngai ;
Ekins-Daukes, Nicholas J. ;
Adams, Jessica G. J. ;
Stavrinou, Paul ;
Vurgaftman, Igor ;
Meyer, Jerry R. ;
Abell, Josh ;
Walters, Robert J. ;
Cress, Cory D. ;
Jenkins, Phillip P. .
PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XIX, 2011, 7933
[7]   Solar cell efficiency tables (version 41) [J].
Green, Martin A. ;
Emery, Keith ;
Hishikawa, Yoshihiro ;
Warta, Wilhelm ;
Dunlop, Ewan D. .
PROGRESS IN PHOTOVOLTAICS, 2013, 21 (01) :1-11
[8]   Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight [J].
Guter, Wolfgang ;
Schoene, Jan ;
Philipps, Simon P. ;
Steiner, Marc ;
Siefer, Gerald ;
Wekkeli, Alexander ;
Welser, Elke ;
Oliva, Eduard ;
Bett, Andreas W. ;
Dimroth, Frank .
APPLIED PHYSICS LETTERS, 2009, 94 (22)
[9]   Electroluminescence analysis of irradiated GaInP/GaInAs/Ge space solar cells [J].
Hoheisel, Raymond ;
Dimroth, Frank ;
Bett, Andreas W. ;
Messenger, Scott R. ;
Jenkins, Phillip P. ;
Walters, Robert J. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 108 :235-240
[10]  
Kerestes C., 2013, J PHOTOVOLTAIC UNPUB