Solitons in an inhomogeneous Murnaghan's rod

被引:103
作者
Cattani, Carlo [1 ]
Sulaiman, Tukur Abdulkadir [2 ,3 ]
Baskonus, Haci Mehmet [4 ]
Bulut, Hasan [2 ,5 ]
机构
[1] Univ Tuscia, Engn Sch DEIM, I-01100 Viterbo, Italy
[2] Firat Univ, Fac Sci, TR-23119 Elazig, Turkey
[3] Fed Univ Dutse, Fac Sci, Jigawa 23119, Dutse, Nigeria
[4] Munzur Univ, Fac Engn, TR-63100 Tunceli, Turkey
[5] Final Int Univ, Fac Educ, Kyrenia, Cyprus
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2018年 / 133卷 / 06期
关键词
NONLINEAR SCHRODINGER-EQUATION; VARIATIONAL ITERATION METHOD; TRAVELING-WAVE SOLUTIONS; POWER-LAW NONLINEARITY; OPTICAL SOLITONS; EVOLUTION; BRIGHT; DARK;
D O I
10.1140/epjp/i2018-12085-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we construct a family of wave solutions to the doubly dispersive equation, such as topological, non-topological, singular, compound topological-non-topological bell-type and compound singular, soliton-like, singular periodic wave and exponential function solutions. These analytical solutions are obtained by using the extended sinh-Gordon equation expansion method and the modified exp(-phi(zeta))-expansion function method. The doubly dispersive equation is an important nonlinear physical model describing the nonlinear wave propagation in the elastic inhomogeneous Murnaghan's rod. Under a suitable choice of parameters, the 2D, 3D and contour graphics to the reported results are also plotted.
引用
收藏
页数:11
相关论文
共 53 条
[1]  
Akbari M, 2014, QUANTUM PHYS LETT, V3, P33
[2]   Soliton solutions of the nonlinear Schrodinger equation with the dual power law nonlinearity and resonant nonlinear Schrodinger equation and their modulation instability analysis [J].
Ali, Asghar ;
Seadawy, Aly R. ;
Lu, Dianchen .
OPTIK, 2017, 145 :79-88
[3]   New structures for the space-time fractional simplified MCH and SRLW equations [J].
Ali, Khalid K. ;
Nuruddeen, R. I. ;
Raslan, K. R. .
CHAOS SOLITONS & FRACTALS, 2018, 106 :304-309
[4]  
[Anonymous], 2003, INT J FLUID MECH RES
[5]   Application of Fixed Point Theorem for Stability Analysis of a Nonlinear Schrodinger with Caputo-Liouville Derivative [J].
Atangana, Abdon ;
Baleanu, Dumitru .
FILOMAT, 2017, 31 (08) :2243-2248
[6]   New model of groundwater flowing within a confine aquifer: application of Caputo-Fabrizio derivative [J].
Atangana, Abdon ;
Alkahtanil, Badr Saad T. .
ARABIAN JOURNAL OF GEOSCIENCES, 2016, 9 (01)
[7]  
Ayati Z, 2017, Nonlinear Eng, V6, P25
[8]   Investigations of dark, bright, combined dark-bright optical and other soliton solutions in the complex cubic nonlinear Schrodinger equation with δ-potential [J].
Baskonus, Haci Mehmet ;
Sulaiman, Tukur Abdulkadir ;
Bulut, Hasan ;
Akturk, Tolga .
SUPERLATTICES AND MICROSTRUCTURES, 2018, 115 :19-29
[9]   Investigation of various travelling wave solutions to the extended (2+1)-dimensional quantum ZK equation [J].
Baskonus, Haci Mehmet ;
Bulut, Hasan ;
Sulaiman, Tukur Abdulkadir .
EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (11)
[10]   New acoustic wave behaviors to the Davey-Stewartson equation with power-law nonlinearity arising in fluid dynamics [J].
Baskonus, Haci Mehmet .
NONLINEAR DYNAMICS, 2016, 86 (01) :177-183