RESONANT ROBIN PROBLEMS WITH INDEFINITE AND UNBOUNDED POTENTIAL

被引:0
作者
Papageorgiou, Nikolaos S. [1 ]
Smyrlis, George [1 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
关键词
Indefinite and unbounded potential; resonance; Robin boundary condition; maximum principle; critical groups; multiple solutions; SEMILINEAR ELLIPTIC-EQUATIONS; MULTIPLE SOLUTIONS; NEUMANN PROBLEMS; EIGENVALUES; SYMMETRIES; EXISTENCE; SIGN;
D O I
10.12775/TMNA.2016.062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a semilinear Robin problem with an indefinite and unbounded potential and a reaction term which asymptotically at +/-infinity is resonant with respect to any nonprincipal nonnegative eigenvalue. We prove two multiplicity theorems producing three and four nontrivial solutions respectively. Our approach uses variational methods based on the critical point theory, truncation and perturbation techniques, and Morse theory (critical groups).
引用
收藏
页码:51 / 74
页数:24
相关论文
共 20 条
[1]  
[Anonymous], 2008, MEM AM MATH SOC
[2]   Critical point theory for asymptotically quadratic functionals and applications to problems with resonance [J].
Bartsch, T ;
Li, SJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (03) :419-441
[3]  
Bartsch T., 1996, Topol. Methods Nonlinear Anal, V7, P115
[4]   Existence of seven solutions for an asymptotically linear Dirichlet problem without symmetries [J].
Castro, Alfonso ;
Cossio, Jorge ;
Velez, Carlos .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2013, 192 (04) :607-619
[5]   STRICT MONOTONICITY OF EIGENVALUES AND UNIQUE CONTINUATION [J].
DEFIGUEIREDO, DG ;
GOSSEZ, JP .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (1-2) :339-346
[6]  
Gasinski L., 2006, NONLINEAR ANAL
[7]   Pairs of nontrivial solutions for resonant Neumann problems [J].
Gasinski, Leszek ;
Papageorgiou, Nikolaos S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 398 (02) :649-663
[8]   VARIATIONAL AND TOPOLOGICAL METHODS IN PARTIALLY ORDERED HILBERT-SPACES [J].
HOFER, H .
MATHEMATISCHE ANNALEN, 1982, 261 (04) :493-514
[9]   Multiple solutions for superlinear Dirichlet problems with an indefinite potential [J].
Kyritsi, Sophia Th ;
Papageorgiou, Nikolaos S. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2013, 192 (02) :297-315
[10]   Splitting theorem, Poincare-Hopf theorem and jumping nonlinear problems [J].
Li, C ;
Li, SJ ;
Liu, JQ .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 221 (02) :439-455