A priori estimates for solutions to anisotropic elliptic problems via symmetrization

被引:11
作者
Alberico, A. [1 ]
di Blasio, G. [2 ]
Feo, F. [3 ]
机构
[1] CNR, Sez Napoli, Ist Applicaz Calcolo M Picone, Via P Castellino 111, I-80131 Naples, Italy
[2] Seconda Univ Napoli, Dipartimento Matemat & Fis, Viale Lincoln,5, I-81100 Caserta, Italy
[3] Univ Napoli Pathenope, Dipartimento Ingn, Ctr Direz Isola C4, I-80143 Naples, Italy
关键词
Anisotropic symmetrization rearrangements; a priori estimates; Dirichlet problems; ISOPERIMETRIC-INEQUALITIES; VARIATIONAL-PROBLEMS; REGULARITY; BOUNDEDNESS; EXISTENCE; EQUATIONS; MINIMIZERS; UNIQUENESS; INTEGRALS;
D O I
10.1002/mana.201500282
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a comparison result for solutions to nonlinear fully anisotropic elliptic problems by means of anisotropic symmetrization. As consequence we deduce a priori estimates for norms of the relevant solutions. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:986 / 1003
页数:18
相关论文
共 47 条
[1]   PARTIAL REGULARITY UNDER ANISOTROPIC (P, Q) GROWTH-CONDITIONS [J].
ACERBI, E ;
FUSCO, N .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 107 (01) :46-67
[2]   Comparison estimates in anisotropic variational problems [J].
Alberico, Angela ;
Cianchi, Andrea .
MANUSCRIPTA MATHEMATICA, 2008, 126 (04) :481-503
[3]   Estimates for Solutions to Anisotropic Elliptic Equations with Zero Order Term [J].
Alberico, Angela ;
Di Blasio, Giuseppina ;
Feo, Filomena .
GEOMETRIC PROPERTIES FOR PARABOLIC AND ELLIPTIC PDE'S, 2016, 176 :1-15
[4]   Boundedness of Solutions to Anisotropic Variational Problems [J].
Alberico, Angela .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (03) :470-486
[5]  
ALVINO A, 1978, RIC MAT, V27, P413
[6]   Convex symmetrization and applications [J].
Alvino, A ;
Ferone, V ;
Trombetti, G ;
Lions, PL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (02) :275-293
[7]  
[Anonymous], ATTI SEM MAT FIS U M
[8]  
[Anonymous], 2002, MONOGR TXB PURE APPL
[9]  
Antontsev S.N., 2002, PROGR NONLINEAR DIFF, V48
[10]  
Antontsev S, 2008, DIFFER INTEGRAL EQU, V21, P401