Model Reduction for Parametric Systems Using Balanced Truncation and Interpolation

被引:47
作者
Baur, Ulrike [1 ]
Benner, Peter [1 ]
机构
[1] Tech Univ Chemnitz, Fak Math, D-09107 Chemnitz, Germany
关键词
Parametric model order reduction; balanced truncation; interpolation; sparse grids;
D O I
10.1524/auto.2009.0787
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a parameter-preserving approach for model order reduction of parameterized, linear systems. The proposed method is a coupling of balanced truncation with interpolation. Thus, error estimates for the quality of the reduced-order system can be derived. The method can be applied to systems containing several parameters by using sparse grids for the discretization of the parameter space.
引用
收藏
页码:411 / 419
页数:9
相关论文
共 32 条
[11]  
Farle O., 2006, Automatisierungstechnik, V54, P161, DOI 10.1524/auto.2006.54.4.161
[12]   Parameter independent model order reduction [J].
Feng, LH .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2005, 68 (03) :221-234
[13]   ALL OPTIMAL HANKEL-NORM APPROXIMATIONS OF LINEAR-MULTIVARIABLE SYSTEMS AND THEIR L INFINITY-ERROR BOUNDS [J].
GLOVER, K .
INTERNATIONAL JOURNAL OF CONTROL, 1984, 39 (06) :1115-1193
[14]  
GRIEBEL M, 1991, NOTE NUM FL, V31, P94
[15]   H2 MODEL REDUCTION FOR LARGE-SCALE LINEAR DYNAMICAL SYSTEMS [J].
Gugercin, S. ;
Antoulas, A. C. ;
Beattie, C. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (02) :609-638
[16]   A modified low-rank Smith method for large-scale Lyapunov equations [J].
Gugercin, S ;
Sorensen, DC ;
Antoulas, AC .
NUMERICAL ALGORITHMS, 2003, 32 (01) :27-55
[17]  
Gugercin S., 2005, LECT NOTES COMPUTATI, V45, P49
[18]  
HANKEBOURGEOIS M, 2006, GRUNDLAGEN NUMERISCH
[19]   KRYLOV SUBSPACE METHODS FOR SOLVING LARGE LYAPUNOV EQUATIONS [J].
JAIMOUKHA, IM ;
KASENALLY, EM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (01) :227-251
[20]   Algorithm 847: spinterp: Piecewise multilinear hierarchical sparse grid interpolation in MATLAB [J].
Klimke, A ;
Wohlmuth, B .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2005, 31 (04) :561-579