Fisher-Rao geometry of Dirichlet distributions

被引:11
作者
Brigant, Alice Le [1 ]
Preston, Stephen C. [2 ,3 ]
Puechmorel, Stephane [4 ]
机构
[1] Univ Paris 1 Pantheon Sorbonne, Ctr PMF, SAMM 4543, Paris, France
[2] Brooklyn Coll, Dept Math, New York, NY USA
[3] CUNY, Grad Ctr, New York, NY USA
[4] Univ Toulouse, Ecole Natl Aviat Civile, Toulouse, France
关键词
D O I
10.1016/j.difgeo.2020.101702
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the geometry induced by the Fisher-Rao metric on the parameter space of Dirichlet distributions. We show that this space is a Hadamard manifold, i.e. that it is geodesically complete and has everywhere negative sectional curvature. An important consequence for applications is that the Frechet mean of a set of Dirichlet distributions is uniquely defined in this geometry. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 35 条
[1]   Inequalities for the polygamma functions [J].
Alzer, H ;
Wells, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (06) :1459-1466
[2]   Natural gradient works efficiently in learning [J].
Amari, S .
NEURAL COMPUTATION, 1998, 10 (02) :251-276
[3]  
Amari SI, 2016, APPL MATH SCI, V194, P1, DOI 10.1007/978-4-431-55978-8
[4]  
Angulo Jesus, 2014, Geometric Theory of Information, P331
[5]   Riemannian Medians and Means With Applications to Radar Signal Processing [J].
Arnaudon, Marc ;
Barbaresco, Frederic ;
Yang, Le .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2013, 7 (04) :595-604
[6]  
Arwini K., 2008, Information geometry: Near randomness and near independence
[7]  
Atkinson Colin, 1981, Sankhya: The Indian Journal of Statistics, Series A, P345
[8]   Information geometry and sufficient statistics [J].
Ay, Nihat ;
Jost, Juergen ;
Le, Hong Van ;
Schwachhoefer, Lorenz .
PROBABILITY THEORY AND RELATED FIELDS, 2015, 162 (1-2) :327-364
[9]   Uniqueness of the Fisher-Rao metric on the space of smooth densities [J].
Bauer, Martin ;
Bruveris, Martins ;
Michor, Peter W. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2016, 48 :499-506
[10]   Unsupervised learning of a finite mixture model based on the Dirichlet distribution and its application [J].
Bouguila, N ;
Ziou, D ;
Vaillancourt, J .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (11) :1533-1543