Optimal rates for parameter estimation of stationary Gaussian processes

被引:31
作者
Es-Sebaiy, Khalifa [1 ]
Viensb, Frederi G. [2 ]
机构
[1] Kuwait Univ, Fac Sci, Dept Math, Kuwait, Kuwait
[2] Michigan State Univ, Dept Stat & Probabil, 619 Red Cedar Rd, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
Central limit theorem; Berry-Esseen; Stationary Gaussian processes; Nourdin-Peccati analysis; Parameter estimation; Fractional Brownian motion; ORNSTEIN-UHLENBECK PROCESS; CENTRAL LIMIT-THEOREMS;
D O I
10.1016/j.spa.2018.08.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study rates of convergence in central limit theorems for partial sums of polynomial functionals of general stationary and asymptotically stationary Gaussian sequences, using tools from analysis on Wiener space. In the quadratic case, thanks to newly developed optimal tools, we derive sharp results, i.e. upper and lower bounds of the same order, where the convergence rates are given explicitly in the Wasserstein distance via an analysis of the functional's absolute third moments. These results are tailored to the question of parameter estimation, which introduces a need to control variance convergence rates. We apply our result to study drift parameter estimation problems for some stochastic differential equations driven by fractional Brownian motion with fixed-time-step observations. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:3018 / 3054
页数:37
相关论文
共 31 条
[1]  
[Anonymous], 2013, Malliavin Calculus and Stochastic Analysis: A Festschrift in Honor of David Nualart
[2]  
[Anonymous], 2012, NORMAL APPROXIMATION
[3]  
Azmoodeh E., 2015, Statistical Inference for Stochastic Processes, V18, P205, DOI [10.1007/s11203-014-9111-8, DOI 10.1007/S11203-014-9111-8]
[4]   Drift parameter estimation for fractional Ornstein-Uhlenbeck process of the second kind [J].
Azmoodeh, Ehsan ;
Morlanes, Jose Igor .
STATISTICS, 2015, 49 (01) :1-18
[5]  
Belfadli R., 2011, Frontiers in Science and Engineering, V1, P1
[6]  
Biermé H, 2012, ALEA-LAT AM J PROBAB, V9, P473
[7]   FRACTIONAL SMOOTHNESS OF DISTRIBUTIONS OF POLYNOMIALS AND A FRACTIONAL ANALOG OF THE HARDY-LANDAU-LITTLEWOOD INEQUALITY [J].
Bogachev, Vladimir I. ;
Kosov, Egor D. ;
Zelenov, Georgii I. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (06) :4401-4432
[8]   Error bounds on the non-normal approximation of Hermite power variations of fractional Brownian motion [J].
Breton, Jean-Christophe ;
Nourdin, Ivan .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 :482-493
[9]   Parameter estimation for the discretely observed fractional Ornstein-Uhlenbeck process and the Yuima R package [J].
Brouste, Alexandre ;
Iacus, Stefano M. .
COMPUTATIONAL STATISTICS, 2013, 28 (04) :1529-1547
[10]  
Cenac P, 2015, PROBAB MATH STAT-POL, V35, P285