Feedback identification of conductance-based models ?

被引:8
作者
Burghi, Thiago B. [1 ]
Schoukens, Maarten [2 ]
Sepulchre, Rodolphe [1 ]
机构
[1] Univ Cambridge, Dept Engn, Control Grp, Cambridge CB2 1PZ, England
[2] Eindhoven Univ Technol, Dept Elect Engn, NL-5612 AZ Eindhoven, Netherlands
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Nonlinear system identification; Closed-loop identification; Prediction error methods; Contraction analysis; Neuronal models;
D O I
10.1016/j.automatica.2020.109297
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper applies the classical prediction error method (PEM) to the estimation of nonlinear discrete time models of neuronal systems subject to input-additive noise. While the nonlinear system exhibits excitability, bifurcations, and limit-cycle oscillations, we prove consistency of the parameter estimation procedure under output feedback. Hence, this paper provides a rigorous framework for the application of conventional nonlinear system identification methods to discrete-time stochastic neuronal systems. The main result exploits the elementary property that conductance-based models of neurons have an exponentially contracting inverse dynamics. This property is implied by the voltage-clamp experiment, which has been the fundamental modeling experiment of neurons ever since the pioneering work of Hodgkin and Huxley. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 41 条
[31]   Automatic Construction of Predictive Neuron Models through Large Scale Assimilation of Electrophysiological Data [J].
Nogaret, Alain ;
Meliza, C. Daniel ;
Margoliash, Daniel ;
Abarbanel, Henry D. I. .
SCIENTIFIC REPORTS, 2016, 6
[32]   Parametric identification of structured nonlinear systems [J].
Novara, C. ;
Vincent, T. ;
Hsu, K. ;
Milanese, M. ;
Poolla, K. .
AUTOMATICA, 2011, 47 (04) :711-721
[33]   Identification of nonlinear systems using Polynomial Nonlinear State Space models [J].
Paduart, Johan ;
Lauwers, Lieve ;
Swevers, Jan ;
Smolders, Kris ;
Schoukens, Johan ;
Pintelon, Rik .
AUTOMATICA, 2010, 46 (04) :647-656
[34]   Interspike interval statistics in the Stochastic Hodgkin-Huxley model: coexistence of gamma frequency bursts and highly irregular firing [J].
Rowat, Peter .
NEURAL COMPUTATION, 2007, 19 (05) :1215-1250
[35]   Global Entrainment of Transcriptional Systems to Periodic Inputs [J].
Russo, Giovanni ;
di Bernardo, Mario ;
Sontag, Eduardo D. .
PLOS COMPUTATIONAL BIOLOGY, 2010, 6 (04)
[36]   Sequential Monte Carlo Methods for System Identification [J].
Schon, Thomas B. ;
Lindsten, Fredrik ;
Dahlin, Johan ;
Wagberg, Johan ;
Naesseth, Christian A. ;
Svensson, Andreas ;
Dai, Liang .
IFAC PAPERSONLINE, 2015, 48 (28) :775-786
[37]   Identification of block-oriented nonlinear systems starting from linear approximations: A survey [J].
Schoukens, Maarten ;
Tiels, Koen .
AUTOMATICA, 2017, 85 :272-292
[38]   Conductance-based neuron models and the slow dynamics of excitability [J].
Soudry, Daniel ;
Meir, Ron .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2012, 6
[39]   Automated neuron model optimization techniques: a review [J].
Van Geit, W. ;
De Schutter, E. ;
Achard, P. .
BIOLOGICAL CYBERNETICS, 2008, 99 (4-5) :241-251
[40]   On partial contraction analysis for coupled nonlinear oscillators [J].
Wang, W ;
Slotine, JJE .
BIOLOGICAL CYBERNETICS, 2005, 92 (01) :38-53