Mobius Transformations and the Poincare Distance in the Quaternionic Setting

被引:44
作者
Bisi, Cinzia [1 ]
Gentili, Graziano [2 ]
机构
[1] Univ Calabria, Dipartimento Matemat, I-87036 Arcavacata Di Rende, CS, Italy
[2] Univ Florence, Dipartimento Matemat, I-50134 Florence, Italy
关键词
Functions of hypercomplex variables; quaternionic; Mobius transformations; quaternionic Poincare distance and metric;
D O I
10.1512/iumj.2009.58.3706
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the space H of quaternions, we investigate the natural, invariant geometry of the open, unit disc Delta(H) and of the open half-space H(+). These two domains are diffeomorphic via a Cayley-type transformation. We first study the geometrical structure of the groups of Mobius transformations of Delta(H) and H(+) and identify original ways of representing them in terms of two (isomorphic) groups of matrices with quaternionic entries. We then define the cross-ratio of four quaternions, prove that, when real, it is invariant under the action of the Mobius transformations, and use it to define the analog of the Poincare distances and differential metrics on Delta(H) and H(+).
引用
收藏
页码:2729 / 2764
页数:36
相关论文
共 20 条
[1]  
Ahlfors L. V., 1988, COMPLEX ANAL, P1
[2]  
Ahlfors L. V., 1985, Differential Geometry and Complex Analysis, P65
[3]   ON THE FIXED-POINTS OF MOBIUS TRANSFORMATIONS IN RN [J].
AHLFORS, LV .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1985, 10 (01) :15-27
[4]  
[Anonymous], TOPICS ALGEBRA
[5]   Quaternionic determinants [J].
Aslaksen, H .
MATHEMATICAL INTELLIGENCER, 1996, 18 (03) :57-65
[6]  
Cao C, 1998, QUASICONFORMAL MAPPINGS AND ANALYSIS, P109
[7]   On the classification of quaternionic Mobius transformations [J].
Cao, WS ;
Parker, JR ;
Wang, XT .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2004, 137 :349-361
[8]  
CARTAN H, 1969, COURS MAITRISE UNPUB
[9]  
Cohen N., 2000, Electron. J. Linear Algebra, V7, P100, DOI [10.13001/1081-3810.1050, DOI 10.13001/1081-3810.1050]
[10]  
Gelfand I., 2003, American Mathematical Society Translation Series 2, 210, Advances in Mathematical Sciences, V54, P111