Efficient Genome Editing of a Facultative Thermophile Using Mesophilic spCas9

被引:54
作者
Mougiakos, Ioannis [1 ]
Bosma, Elleke F. [1 ,3 ]
Weenink, Koen [1 ]
Vossen, Eric [1 ]
Goijvaerts, Kirsten [1 ]
van der Oost, John [1 ]
van Kranenburg, Richard [1 ,2 ]
机构
[1] Wageningen Univ, Lab Microbiol, Stippeneng 4, NL-6708 WE Wageningen, Netherlands
[2] Corbion, Arkelsedijk 46, NL-4206 AC Gorinchem, Netherlands
[3] Tech Univ Denmark, Novo Nordisk Fdn, Ctr Biosustainabil, Kemitorvet B220, DK-2800 Lyngby, Denmark
关键词
CRISPR/Cas9; bacteria; Bacillus smithii; thermophiles; genome editing; homologous recombination; L-LACTIC ACID; OPEN FERMENTATIVE PRODUCTION; CRISPR-CAS SYSTEMS; BACILLUS-SMITHII; CLOSTRIDIUM-BEIJERINCKII; ESCHERICHIA-COLI; GENE DELETION; ETHANOL-PRODUCTION; BACTERIA; TOOLKIT;
D O I
10.1021/acssynbio.6b00339
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Well-developed genetic tools for thermophilic microorganisms are scarce, despite their industrial and scientific relevance. Whereas highly efficient CRISPR/Cas9-based genome editing is on the rise in prokaryotes, it has never been employed in a thermophile. Here, we apply Streptococcus pyogenes Cas9 (spCas9)-based genome editing to a moderate thermophile, i.e., Bacillus smithii, including a gene deletion, gene knockout via insertion of premature stop codons, and gene insertion. We show that spCas9 is inactive in vivo above 42 degrees C, and we employ the wide temperature growth range of B. smithii as an induction system for spCas9 expression. Homologous recombination with plasmid-borne editing templates is performed at 45.55 degrees C, when spCas9 is inactive. Subsequent transfer to 37 degrees C allows for counterselection through production of active spCas9, which introduces lethal double-stranded DNA breaks to the nonedited cells. The developed method takes 4 days with 90, 100, and 20% efficiencies for gene deletion, knockout, and insertion, respectively. The major advantage of our system is the limited requirement for genetic parts: only one plasmid, one selectable marker, and a promoter are needed, and the promoter does not need to be inducible or well-characterized. Hence, it can be easily applied for genome editing purposes in both mesophilic and thermophilic nonmodel organisms with a limited genetic toolbox and ability to grow at, or tolerate, temperatures of 37 and at or above 42 degrees C.
引用
收藏
页码:849 / 861
页数:13
相关论文
共 59 条
[1]   High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? [J].
Abdel-Banat, Babiker M. A. ;
Hoshida, Hisashi ;
Ano, Akihiko ;
Nonklang, Sanom ;
Akada, Rinji .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 85 (04) :861-867
[2]   CRISPR provides acquired resistance against viruses in prokaryotes [J].
Barrangou, Rodolphe ;
Fremaux, Christophe ;
Deveau, Helene ;
Richards, Melissa ;
Boyaval, Patrick ;
Moineau, Sylvain ;
Romero, Dennis A. ;
Horvath, Philippe .
SCIENCE, 2007, 315 (5819) :1709-1712
[3]   Exploiting CRISPR-Cas immune systems for genome editing in bacteria [J].
Barrangou, Rodolphe ;
van Pijkeren, Jan-Peter .
CURRENT OPINION IN BIOTECHNOLOGY, 2016, 37 :61-68
[4]   Microbial contamination of fuel ethanol fermentations [J].
Beckner, M. ;
Ivey, M. L. ;
Phister, T. G. .
LETTERS IN APPLIED MICROBIOLOGY, 2011, 53 (04) :387-394
[5]   Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes [J].
Bhalla, Aditya ;
Bansal, Namita ;
Kumar, Sudhir ;
Bischoff, Kenneth M. ;
Sani, Rajesh K. .
BIORESOURCE TECHNOLOGY, 2013, 128 :751-759
[6]   HIGH-EFFICIENCY GENE INACTIVATION AND REPLACEMENT SYSTEM FOR GRAM-POSITIVE BACTERIA [J].
BISWAS, I ;
GRUSS, A ;
EHRLICH, SD ;
MAGUIN, E .
JOURNAL OF BACTERIOLOGY, 1993, 175 (11) :3628-3635
[7]  
Bosma E.F., 2013, Current Biotechnology, V2, P360, DOI DOI 10.2174/18722083113076660028
[8]   Complete genome sequence of thermophilic Bacillus smithii type strain DSM 4216T [J].
Bosma, Elleke F. ;
Koehorst, Jasper J. ;
van Hijum, Sacha A. F. T. ;
Renckens, Bernadet ;
Vriesendorp, Bastienne ;
van de Weijer, Antonius H. P. ;
Schaap, Peter J. ;
de Vos, Willem M. ;
van der Oost, John ;
van Kranenburg, Richard .
STANDARDS IN GENOMIC SCIENCES, 2016, 11
[9]   Establishment of markerless gene deletion tools in thermophilic Bacillus smithii and construction of multiple mutant strains [J].
Bosma, Elleke F. ;
van de Weijer, Antonius H. P. ;
van der Vlist, Laurens ;
de Vos, Willem M. ;
van der Oost, John ;
van Kranenburg, Richard .
MICROBIAL CELL FACTORIES, 2015, 14
[10]   Isolation and Screening of Thermophilic Bacilli from Compost for Electrotransformation and Fermentation: Characterization of Bacillus smithii ET 138 as a New Biocatalyst [J].
Bosma, Elleke F. ;
van de Weijer, Antonius H. P. ;
Daas, Martinus J. A. ;
van der Oost, John ;
de Vos, Willem M. ;
van Kranenburg, Richard .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2015, 81 (05) :1874-1883