Machine Learning Prognostic Models for Gastrointestinal Bleeding Using Electronic Health Record Data

被引:6
作者
Shung, Dennis [1 ]
Laine, Loren [1 ,2 ]
机构
[1] Yale Sch Med, New Haven, CT 06510 USA
[2] VA Connecticut Healthcare Syst, West Haven, CT 06516 USA
基金
美国国家卫生研究院;
关键词
D O I
10.14309/ajg.0000000000000720
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Risk assessment tools for patients with gastrointestinal bleeding may be used for determining level of care and informingmanagement decisions. Development of models that use data from electronic health records is an important step for future deployment of such tools in clinical practice. Furthermore, machine learning tools have the potential to outperform standard clinical risk assessment tools. The authors developed a new machine learning tool for the outcome of in-hospital mortality and suggested it outperforms the intensive care unit prognostic tool, APACHE IVa. Limitations include lack of generalizability beyond intensive care unit patients, inability to use early in the hospital course, and lack of external validation.
引用
收藏
页码:1199 / 1200
页数:2
相关论文
共 12 条
[1]   Management of Nonvariceal Upper Gastrointestinal Bleeding: Guideline Recommendations From the International Consensus Group [J].
Barkun, Alan N. ;
Almadi, Majid ;
Kuipers, Ernst J. ;
Laine, Loren ;
Sung, Joseph ;
Tse, Frances ;
Leontiadis, Grigorios, I ;
Abraham, Neena S. ;
Calvet, Xavier ;
Chan, Francis K. L. ;
Douketis, James ;
Enns, Robert ;
Gralnek, Ian M. ;
Jairath, Vipul ;
Jensen, Dennis ;
Lau, James ;
Lip, Gregory Y. H. ;
Loffroy, Romaric ;
Maluf-Filho, Fauze ;
Meltzer, Andrew C. ;
Reddy, Nageshwar ;
Saltzman, John R. ;
Marshall, John K. ;
Bardou, Marc .
ANNALS OF INTERNAL MEDICINE, 2019, 171 (11) :805-+
[2]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845
[3]  
Deshmukh F, AM J GASTROENTEROL
[4]  
Hastie T, 2009, Springer series in statistics, DOI 10.1007/978-0-387-84858-7
[5]   Management of Patients With Ulcer Bleeding [J].
Laine, Loren ;
Jensen, Dennis M. .
AMERICAN JOURNAL OF GASTROENTEROLOGY, 2012, 107 (03) :345-361
[6]   Diagnosis and management of acute lower gastrointestinal bleeding: guidelines from the British Society of Gastroenterology [J].
Oakland, Kathryn ;
Chadwick, Georgina ;
East, James E. ;
Guy, Richard ;
Humphries, Adam ;
Jairath, Vipul ;
McPherson, Simon ;
Metzner, Magdalena ;
Morris, A. John ;
Murphy, Mike F. ;
Tham, Tony ;
Uberoi, Raman ;
Veitch, Andrew McCulloch ;
Wheeler, James ;
Regan, Cuthbert ;
Hoare, Jonathan .
GUT, 2019, 68 (05) :776-789
[7]   Machine Learning to Predict Outcomes in Patients with Acute Gastrointestinal Bleeding: A Systematic Review [J].
Shung, Dennis ;
Simonov, Michael ;
Gentry, Mark ;
Au, Benjamin ;
Laine, Loren .
DIGESTIVE DISEASES AND SCIENCES, 2019, 64 (08) :2078-2087
[8]   Validation of a Machine Learning Model That Outperforms Clinical Risk Scoring Systems for Upper Gastrointestinal Bleeding [J].
Shung, Dennis L. ;
Au, Benjamin ;
Taylor, Richard Andrew ;
Tay, J. Kenneth ;
Laursen, Stig B. ;
Stanley, Adrian J. ;
Dalton, Harry R. ;
Ngu, Jeffrey ;
Schultz, Michael ;
Laine, Loren .
GASTROENTEROLOGY, 2020, 158 (01) :160-167
[9]   Comparison of risk scoring systems for patients presenting with upper gastrointestinal bleeding: international multicentre prospective study [J].
Stanley, Adrian J. ;
Laine, Loren ;
Dalton, Harry R. ;
Ngu, Jing H. ;
Schultz, Michael ;
Abazi, Roseta ;
Zakko, Liam ;
Thornton, Susan ;
Wilkinson, Kelly ;
Khor, Cristopher J. L. ;
Murray, Iain A. ;
Laursen, Stig B. .
BMJ-BRITISH MEDICAL JOURNAL, 2017, 356
[10]   Assessing the Performance of Prediction Models A Framework for Traditional and Novel Measures [J].
Steyerberg, Ewout W. ;
Vickers, Andrew J. ;
Cook, Nancy R. ;
Gerds, Thomas ;
Gonen, Mithat ;
Obuchowski, Nancy ;
Pencina, Michael J. ;
Kattan, Michael W. .
EPIDEMIOLOGY, 2010, 21 (01) :128-138