Iterative methods for monotone nonexpansive mappings in uniformly convex spaces

被引:9
作者
Shukla, Rahul [1 ]
Wisnicki, Andrzej [2 ]
机构
[1] Univ Johannesburg, Dept Math & Appl Math, Kingsway Campus, ZA-2006 Auckland Pk, South Africa
[2] Pedag Univ Krakow, Dept Math, PL-30084 Krakow, Poland
关键词
Monotone mapping; nonexpansive mapping; fixed point; ergodic theorem; Picard iteration; ordered Banach space; CONVERGENCE THEOREMS;
D O I
10.1515/anona-2020-0170
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show the nonlinear ergodic theorem for monotone 1-Lipschitz mappings in uniformly convex spaces: if C is a bounded closed convex subset of an ordered uniformly convex space (X, parallel to.parallel to, <=), T : C -> C a monotone 1-Lipschitz mapping and x <= T(x), then the sequence of averages 1/n Sigma T-n-1(i-0)i(x) converges weakly to a fixed point of T. As a consequence, it is shown that the sequence of Picard's iteration {T-n(x)} also converges weakly to a fixed point of T. The results are new even in a Hilbert space. The Krasnosel'skii-Mann and the Halpern iteration schemes are studied as well.
引用
收藏
页码:1061 / 1070
页数:10
相关论文
共 33 条
  • [1] FIXED POINT THEOREM FOR MONOTONE ASYMPTOTICALLY NONEXPANSIVE MAPPINGS
    Alfuraidan, Monther Rashed
    Khamsi, Mohamed Amine
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (06) : 2451 - 2456
  • [2] Baillon J.B., 1978, C R ACAD SCI PARIS S, pA157
  • [3] BAILLON JB, 1975, CR ACAD SCI A MATH, V280, P1511
  • [4] Benyamini Y., 2000, ANAL VOL 1 VOLUME 48, V1
  • [5] Mann iteration process for monotone nonexpansive mappings
    Bin Dehaish, Buthinah Abdullatif
    Khamsi, Mohamed Amine
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2015,
  • [6] KRASNOSELSKI-MANN ITERATIONS IN NORMED SPACES
    BORWEIN, J
    REICH, S
    SHAFRIR, I
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1992, 35 (01): : 21 - 28
  • [7] Bruck R. E., 1981, B ACAD POL SCI SMAP, V29, P585
  • [8] SIMPLE PROOF OF THE MEAN ERGODIC THEOREM FOR NON-LINEAR CONTRACTIONS IN BANACH-SPACES
    BRUCK, RE
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1979, 32 (2-3) : 107 - 116
  • [9] A unified treatment of some iterative algorithms in signal processing and image reconstruction
    Byrne, C
    [J]. INVERSE PROBLEMS, 2004, 20 (01) : 103 - 120
  • [10] Chidume C, 2009, LECT NOTES MATH, V1965, P1