Inelastic interactions and double Wronskian solutions for the Whitham-Broer-Kaup model in shallow water

被引:61
作者
Wang, Lei [1 ,2 ]
Gao, Yi-Tian [1 ,2 ,3 ]
Gai, Xiao-Ling [1 ,2 ]
Sun, Zhi-Yuan [1 ,2 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Key Lab Fluid Mech, Minist Educ, Beijing 100191, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, Natl Lab Computat Fluid Dynam, Beijing 100191, Peoples R China
[3] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
NONLINEAR SCHRODINGER MODEL; PARTIALLY COHERENT SOLITONS; TRAVELING-WAVE SOLUTIONS; ION-ACOUSTIC-WAVES; DARBOUX TRANSFORMATION; MULTISOLITON SOLUTIONS; SYMBOLIC-COMPUTATION; EXPLICIT SOLUTIONS; OPTICAL-FIBERS; BACKLUND TRANSFORMATION;
D O I
10.1088/0031-8949/80/06/065017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Under investigation in this paper is the Whitham-Broer-Kaup (WBK) model for the dispersive long wave in shallow water. Connection between the WBK model and a second-order Ablowitz-Kaup-Newell-Segur (AKNS) system is revealed. By means of the Darboux transformation for the second-order AKNS system, the multisoliton solutions in terms of the double Wronskian determinant for the WBK model are derived. Inelastic interactions are graphically discussed. Our results could be helpful for interpreting certain nonlinear wave phenomena in shallow water.
引用
收藏
页数:8
相关论文
共 88 条
[1]  
Ablowitz M.J., 1991, Solitons, Nonlinear Evolution Equations and Inverse Scattering, DOI DOI 10.1017/CBO9780511623998
[2]   Partially coherent solitons of variable shape [J].
Akhmediev, N ;
Krolikowski, W ;
Snyder, AW .
PHYSICAL REVIEW LETTERS, 1998, 81 (21) :4632-4635
[3]   Multi-soliton complexes [J].
Akhmediev, N ;
Ankiewicz, A .
CHAOS, 2000, 10 (03) :600-612
[4]   Partially coherent solitons of variable shape in a slow Kerr-like medium:: Exact solutions [J].
Ankiewicz, A ;
Królikowski, W ;
Akhmediev, NN .
PHYSICAL REVIEW E, 1999, 59 (05) :6079-6087
[5]   Symbolic calculation in chemistry: Selected examples [J].
Barnett, MP ;
Capitani, JF ;
von zur Gathen, J ;
Gerhard, J .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2004, 100 (02) :80-104
[6]   Semifoldons with fusion and fission properties of (2+1)-dimensional nonlinear system [J].
Dai, Chaoqing .
CHAOS SOLITONS & FRACTALS, 2008, 38 (02) :474-480
[7]   Response to "Comment on 'A new mathematical approach for finding the solitary waves in dusty plasma'" [Phys. Plasmas 6, 4392 (1999)] [J].
Das, GC ;
Sarma, J .
PHYSICS OF PLASMAS, 1999, 6 (11) :4394-4397
[8]   Integrable evolution systems based on Gerdjikov-Ivanov equations, bi-Hamiltonian structure, finite-dimensional integrable systems and N-fold Darboux transformation [J].
Fan, EG .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (11) :7769-7782
[9]  
Fan EG, 1998, APPL MATH MECH-ENGL, V19, P645
[10]   SOLITON-SOLUTIONS OF NON-LINEAR EVOLUTION-EQUATIONS [J].
FREEMAN, NC .
IMA JOURNAL OF APPLIED MATHEMATICS, 1984, 32 (1-3) :125-145