Semilinear fractional integro-differential equations with compact semigroup

被引:17
作者
Rashid, M. H. M. [1 ]
El-Qaderi, Yahya [1 ]
机构
[1] Mutah Univ, Fac Sci, Dept Math & Stat, Alkarak, Jordan
关键词
Mild solution; Compact semigroup; Fractional integro-differential equations;
D O I
10.1016/j.na.2009.06.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the local and global existence of mild solutions to a class of fractional integro-differential equations in an arbitrary Banach space associated with operators generating compact semigroup on the Banach space. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6276 / 6282
页数:7
相关论文
共 12 条
[1]  
[Anonymous], 1983, APPL MATH SCI
[2]  
Bahuguna D., 1998, Appl. Math. Stoch. Anal, V11, P507, DOI [10.1155/S1048953398000410, DOI 10.1155/S1048953398000410]
[3]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[4]  
Dieudonn J., 1960, Foundations of Modern Analysis
[5]  
Guo D., 1996, Nonlinear Integral Equations in Abstract Spaces
[6]   Approximate analytical solution for seepage flow with fractional derivatives in porous media [J].
He, JH .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 167 (1-2) :57-68
[7]   A SEMILINEAR PARABOLIC VOLTERRA INTEGRODIFFERENTIAL EQUATION [J].
HEARD, ML ;
RANKIN, SM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 71 (02) :201-233
[8]  
Mainardi F., 1997, Fractals and Fractional Calculus in Continuum Mechanics, P291, DOI DOI 10.1007/978-3-7091-2664-6_7
[9]  
Miller K.S., 1993, INTRO FRACTIONAL INT
[10]  
Samko SG., 1993, FRACTIONAL INTEGRAL