High-quality PVD graphene growth by fullerene decomposition on Cu foils

被引:29
作者
Azpeitia, J. [1 ]
Otero-Irurueta, G. [2 ]
Palacio, I. [1 ]
Martinez, J. I. [1 ]
Ruiz del Arbol, N. [1 ]
Santoro, G. [1 ]
Gutierrez, A. [3 ]
Aballe, L. [4 ]
Foerster, M. [4 ]
Kalbac, M. [5 ]
Vales, V. [5 ]
Mompean, F. J. [1 ]
Garcia-Hernandez, M. [1 ]
Martin-Gago, J. A. [1 ]
Munuera, C. [1 ]
Lopez, M. F. [1 ]
机构
[1] ICMM CSIC, Mat Sci Factory, Sor Juana Ines Cruz 3, E-28049 Madrid, Spain
[2] Univ Aveiro, Ctr Mech Technol & Automat TEMA DEM, P-3810193 Aveiro, Portugal
[3] Univ Autonoma Madrid, Dept Fis Aplicada, E-28049 Madrid, Spain
[4] ALBA Synchrotron Light Facil, Carrer Ilum 2-26, Barcelona 08290, Spain
[5] ASCR, J Heyrovsky Inst Phys Chem, Vvi, Dolejskova 3, CZ-18223 Prague 8, Czech Republic
关键词
EPITAXIAL GRAPHENE; COPPER SUBSTRATE; RAMAN-SPECTRUM; CVD-GRAPHENE; C-60; OXIDATION; PHOTOEMISSION; CRYSTALS; POINTS; FILMS;
D O I
10.1016/j.carbon.2017.04.067
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a new protocol to grow large-area, high-quality single-layer graphene on Cu foils at relatively low temperatures. We use C-60 molecules evaporated in ultra high vacuum conditions as carbon source. This clean environment results in a strong reduction of oxygen-containing groups as depicted by X-ray photoelectron spectroscopy (XPS). Unzipping of C-60 is thermally promoted by annealing the substrate at 800 degrees C during evaporation. The graphene layer extends over areas larger than the Cu crystallite size, although it is changing its orientation with respect to the surface in the wrinkles and grain boundaries, producing a modulated ring in the low energy electron diffraction (LEED) pattern. This protocol is a self-limiting process leading exclusively to one single graphene layer. Raman spectroscopy confirms the high quality of the grown graphene. This layer exhibits an unperturbed Dirac-cone with a clear n-doping of 0.77 eV, which is caused by the interaction between graphene and substrate. Density functional theory (DFT) calculations show that this interaction can be induced by a coupling between graphene and substrate at specific points of the structure leading to a local sp(3) configuration, which also contribute to the D-band in the Raman spectra. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:535 / 543
页数:9
相关论文
共 54 条
[1]   The ALBA spectroscopic LEEM-PEEM experimental station: layout and performance [J].
Aballe, Lucia ;
Foerster, Michael ;
Pellegrin, Eric ;
Nicolas, Josep ;
Ferrer, Salvador .
JOURNAL OF SYNCHROTRON RADIATION, 2015, 22 :745-752
[2]   Exploring electronic structure of one-atom thick polycrystalline graphene films: A nano angle resolved photoemission study [J].
Avila, Jose ;
Razado, Ivy ;
Lorcy, Stephane ;
Fleurier, Romain ;
Pichonat, Emmanuelle ;
Vignaud, Dominique ;
Wallart, Xavier ;
Asensio, Maria C. .
SCIENTIFIC REPORTS, 2013, 3
[3]   Role and Effective Treatment of Dispersive Forces in Materials: Polyethylene and Graphite Crystals as Test Cases [J].
Barone, Vincenzo ;
Casarin, Maurizio ;
Forrer, Daniel ;
Pavone, Michele ;
Sambi, Mauro ;
Vittadini, Andrea .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (06) :934-939
[4]   Phonons and related crystal properties from density-functional perturbation theory [J].
Baroni, S ;
de Gironcoli, S ;
Dal Corso, A ;
Giannozzi, P .
REVIEWS OF MODERN PHYSICS, 2001, 73 (02) :515-562
[5]   Exploring and rationalising effective n-doping of large area CVD-graphene by NH3 [J].
Bianco, G. V. ;
Losurdo, M. ;
Giangregorio, M. M. ;
Capezzuto, P. ;
Bruno, G. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (08) :3632-3639
[6]  
Bruesch P., 1986, Phonons: Theory and experiments II
[7]   Doping Dependence of the Raman Spectrum of Defected Graphene [J].
Bruna, Matteo ;
Ott, Anna K. ;
Ijaes, Mari ;
Yoon, Duhee ;
Sassi, Ugo ;
Ferrari, Andrea C. .
ACS NANO, 2014, 8 (07) :7432-7441
[8]   Dielectric properties and Raman spectra of ZnO from a first principles finite-differences/finite-fields approach [J].
Calzolari, Arrigo ;
Nardelli, Marco Buongiorno .
SCIENTIFIC REPORTS, 2013, 3
[9]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[10]   Strongly Interacting C60/Ir(111) Interface: Transformation of C60 into Graphene and Influence of Graphene Interlayer [J].
Fei, Xiangmin ;
Zhang, Xu ;
Lopez, Vanessa ;
Lu, Gang ;
Gao, Hong-Jun ;
Gao, Li .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (49) :27550-27555