Liquid desiccant cooling system (LDCS) is an ideal choice as a green air-conditioning system. However, its performance is not good enough because a lot of energy is wasted in the conventional thermal regeneration process. Moreover, the system is unstable when the environmental humidity is high. To improve, a capacitive deionization regeneration method is proposed: Driven by solar photovoltaic generator, strong desiccant are acquired in an electric field with capacitive deionization units. It avoids the energy waste in the conventional pattern and has a better performance. Theoretical and experimental researches are presented. Mass and energy models have been developed and some important parameters have been investigated. Performance comparison has been made between the new method and solar thermal regeneration method. Preliminary tests have been made on the regeneration process. Through analysis, it exposes the influences of the solution concentration, voltage and energy recovery ratio. The highest COP can attain 6 under certain working conditions. The experimental results show the actual performance is higher in the lower concentration range. Compared to the solar thermal method, the new method could have better performance and is potential for application. (C) 2017 Elsevier Ltd. All rights reserved.
机构:
Southeast Univ, Sch Energy & Environm, Nanjing 210096, Jiangsu, Peoples R ChinaSoutheast Univ, Sch Energy & Environm, Nanjing 210096, Jiangsu, Peoples R China
Cheng Qing
Zhang Xiao-song
论文数: 0引用数: 0
h-index: 0
机构:
Southeast Univ, Sch Energy & Environm, Nanjing 210096, Jiangsu, Peoples R ChinaSoutheast Univ, Sch Energy & Environm, Nanjing 210096, Jiangsu, Peoples R China
Zhang Xiao-song
Xu Yao
论文数: 0引用数: 0
h-index: 0
机构:
Southeast Univ, Sch Energy & Environm, Nanjing 210096, Jiangsu, Peoples R ChinaSoutheast Univ, Sch Energy & Environm, Nanjing 210096, Jiangsu, Peoples R China
机构:
Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Su, Bosheng
Qu, Wanjun
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Qu, Wanjun
Han, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Han, Wei
Jin, Hongguang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Jin, Hongguang
RENEWABLE ENERGY INTEGRATION WITH MINI/MICROGRID,
2018,
145
: 116
-
121