Hyperkahler manifolds of Jacobian type

被引:1
作者
Shen, Mingmin [1 ]
机构
[1] Univ Cambridge, DPMMS, Wilberforce Rd, Cambridge CB3 0WB, England
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2016年 / 712卷
关键词
CUBIC FOURFOLDS; INTEGRAL COHOMOLOGY; HILBERT SCHEMES; SURFACES; RING;
D O I
10.1515/crelle-2013-0102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we define the notion of a hyperkahler manifold (potentially) of Jacobian type. If we view hyperkahler manifolds as "abelian varieties", then those of Jacobian type should be viewed as "Jacobian varieties". Under a minor assumption on the polarization, we show that a very general polarized hyperkahler fourfold F of K-3([2])-type is not of Jacobian type. As a potential application, we conjecture that if a cubic fourfold is rational then its variety of lines is of Jacobian type. Under some technical assumption, it is proved that the variety of lines on a rational cubic fourfold is potentially of Jacobian type. We also prove the Hodge conjecture in degree 4 for a generic F of K-3([2])-type.
引用
收藏
页码:189 / 223
页数:35
相关论文
共 23 条
[1]  
[Anonymous], 1998, Ergeb. Math. Grenzgeb.
[2]  
BEAUVILLE A, 1983, J DIFFER GEOM, V18, P755
[3]  
BEAUVILLE A, 1985, CR ACAD SCI I-MATH, V301, P703
[4]   On the cohomology ring of a simple hyperkahler manifold (on the results of Verbitsky) [J].
Bogomolov, FA .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1996, 6 (04) :612-618
[5]  
Boissiere S., J TOPOLOGY IN PRESS
[6]  
Clemens H., 1972, ANN MATH, V95, P281
[7]  
Grothendieck A., 1957, Tohoku Mathematical Journal, Second Series, V9, P119, DOI [/10.2748/tmj/1178244839, 10.2748/tmj/1178244839, DOI 10.2748/TMJ/1178244839]
[8]   Special cubic fourfolds [J].
Hassett, B .
COMPOSITIO MATHEMATICA, 2000, 120 (01) :1-23
[9]  
Hassett B, 1999, J ALGEBRAIC GEOM, V8, P103
[10]   Compact hyperkahler manifolds: basic results [J].
Huybrechts, D .
INVENTIONES MATHEMATICAE, 1999, 135 (01) :63-113