Influence and sharp-threshold theorems for monotonic measures

被引:34
作者
Graham, B. T. [1 ]
Grimmett, G. R. [1 ]
机构
[1] Univ Cambridge, Stat Lab, Cambridge CB3 0WB, England
关键词
influence; sharp threshold; monotonic measure; FKG lattice condition; positive association; random-cluster model; percolation;
D O I
10.1214/009117906000000278
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The influence theorem for product measures on the discrete space to, {0, 1}(N) may be extended to probability measures with the property of monotonicity (which is equivalent to "strong positive association"). Corresponding results are valid for probability measures on the cube [0, 1](N) that are absolutely continuous with respect to Lebesgue measure. These results lead to a sharp-threshold theorem for measures of random-cluster type, and this may be applied to box crossings in the two-dimensional random-cluster model.
引用
收藏
页码:1726 / 1745
页数:20
相关论文
共 22 条
[1]   GENERALIZED HOLLEY-PRESTON INEQUALITIES ON MEASURE-SPACES AND THEIR PRODUCTS [J].
BATTY, CJK ;
BOLLMANN, HW .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 53 (02) :157-173
[2]  
BEN-OR M., 1990, RANDOMNESS COMPUTATI, P91
[3]   STRICT INEQUALITY FOR CRITICAL-VALUES OF POTTS MODELS AND RANDOM-CLUSTER PROCESSES [J].
BEZUIDENHOUT, CE ;
GRIMMETT, GR ;
KESTEN, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 158 (01) :1-16
[4]   The critical probability for random Voronoi percolation in the plane is 1/2 [J].
Bollobas, Bela ;
Riordan, Oliver .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 136 (03) :417-468
[5]   A short proof of the Harris-Kesten theorem [J].
Bollobas, Bela ;
Riordan, Oliver .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 :470-484
[6]   THE INFLUENCE OF VARIABLES IN PRODUCT-SPACES [J].
BOURGAIN, J ;
KAHN, J ;
KALAI, G ;
KATZNELSON, Y ;
LINIAL, N .
ISRAEL JOURNAL OF MATHEMATICS, 1992, 77 (1-2) :55-64
[7]  
CHAYES JT, 1986, CRITICAL PHENOMENA R, P1001
[8]   CORRELATION INEQUALITIES ON SOME PARTIALLY ORDERED SETS [J].
FORTUIN, CM ;
KASTELEY.PW ;
GINIBRE, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1971, 22 (02) :89-&
[9]   RANDOM-CLUSTER MODEL .3. SIMPLE RANDOM-CLUSTER MODEL [J].
FORTUIN, CM .
PHYSICA, 1972, 59 (04) :545-&
[10]   Influences in product spaces: KKL and BKKKL revisited [J].
Friedgut, E .
COMBINATORICS PROBABILITY & COMPUTING, 2004, 13 (01) :17-29