Two new extragradient methods for solving equilibrium problems

被引:17
作者
Rehman, Habib Ur [1 ]
Gibali, Aviv [2 ,3 ]
Kumam, Poom [1 ,4 ,5 ]
Sitthithakerngkiet, Kanokwan [6 ]
机构
[1] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Ctr Excellence Theoret & Computat Sci TaCS CoE, Fixed Point Res Lab,Fixed Point Theory & Applicat, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[2] ORT Braude Coll, Dept Math, Karmiel 2161002, Israel
[3] Ctr Math & Sci Computat, Haifa, Israel
[4] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Ctr Excellence Theoret & Computat Sci TaCS CoE, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[5] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[6] King Mongkuts Univ Technol North Bangkok KMUTNB, Fac Sci Appl, Intelligent & Nonlinear Dynam Innovat Res Ctr, Dept Math, Bangkok, Thailand
关键词
Strong convergence; Lipschitz-type constants; Equilibrium problem; Variational inequalities; Fixed point problems; PROXIMAL POINT METHOD; REGULARIZATION; CONVERGENCE; ALGORITHMS;
D O I
10.1007/s13398-021-01017-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are concern with the classical equilibrium problem in real Hilbert spaces and introduce two new extragradient variants for it. By taking into account several fixed point theory techniques, we obtain simple structure methods that converge strongly and hence demonstrate the theoretical advantage of our methods. Moreover, our convergence assumptions are weaker than those assumed in related works in the literature. Primary numerical examples with comparisons illustrate the behaviour of our proposed scheme and show its advantages.
引用
收藏
页数:25
相关论文
共 40 条
[1]  
Argyros IK., 2019, UNDERGRADUATE RES CA
[2]  
Bauschke H.H., 2017, CMS Books Math./Ouvrages Math. SMC, V2, DOI DOI 10.1007/978-3-319-48311-5
[3]   Existence and solution methods for equilibria [J].
Bigi, Giancarlo ;
Castellani, Marco ;
Pappalardo, Massimo ;
Passacantando, Mauro .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2013, 227 (01) :1-11
[4]  
Blum E., 1994, Math. Student, V63, P123
[5]   CONSTRUCTION OF FIXED POINTS OF NONLINEAR MAPPINGS IN HILBERT SPACE [J].
BROWDER, FE ;
PETRYSHY.WV .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1967, 20 (02) :197-&
[6]   The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space [J].
Censor, Y. ;
Gibali, A. ;
Reich, S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (02) :318-335
[7]   TRAFFIC EQUILIBRIUM AND VARIATIONAL-INEQUALITIES [J].
DAFERMOS, S .
TRANSPORTATION SCIENCE, 1980, 14 (01) :42-54
[8]   Modified extragradient algorithms for solving equilibrium problems [J].
Dang Van Hieu ;
Cho, Yeol Je ;
Xiao, Yi-bin .
OPTIMIZATION, 2018, 67 (11) :2003-2029
[9]   Halpern subgradient extragradient method extended to equilibrium problems [J].
Dang Van Hieu .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (03) :823-840
[10]   MiKM: multi-step inertial Krasnosel'skii-Mann algorithm and its applications [J].
Dong, Q. L. ;
Huang, J. Z. ;
Li, X. H. ;
Cho, Y. J. ;
Rassias, Th. M. .
JOURNAL OF GLOBAL OPTIMIZATION, 2019, 73 (04) :801-824