Numerical Radius Inequalities for Products of Hilbert Space Operators

被引:0
作者
Hosseini, M. Shah [1 ]
Moosavi, B. [2 ]
机构
[1] Islamic Azad Univ, Dept Math, Shahr Eqods Branch, Tehran, Iran
[2] Islamic Azad Univ, Dept Math, Safadasht Branch, Tehran, Iran
关键词
and Phrases; Bounded linear operator; Hilbert space; norm inequality; numerical radius; NORM;
D O I
10.30495/JME.2022.2343
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce some numerical radius inequalities for prod-ucts of two Hilbert space operators. Among other inequalities, it is shown that if S, T is an element of B(H) and ST = TS*, then omega(ST) <=omega(S)omega(T) + 21DSsup theta is an element of RDei theta T +e-i theta T *, where DS = inf parallel to S - lambda I parallel to. Also, we show that if S, T is an element of B(H) and S be lambda is an element of C self-adjointable, then ( ) omega(ST) <= 2 parallel to S parallel to - min lambda is an element of sigma(S)|lambda| omega(T).
引用
收藏
页数:1
相关论文
共 11 条
[1]   NUMERICAL RADIUS INEQUALITIES FOR PRODUCTS OF HILBERT SPACE OPERATORS [J].
Abu-Omar, Amer ;
Kittaneh, Fuad .
JOURNAL OF OPERATOR THEORY, 2014, 72 (02) :521-527
[2]  
Berger CA., 1965, Notices Amer. Math. Soc., V12, P590
[3]  
Dragomir SS, 2008, TAMKANG J MATH, V39, P1
[4]   UNITARILY-INVARIANT OPERATOR NORMS [J].
FONG, CK ;
HOLBROOK, JAR .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1983, 35 (02) :274-299
[5]  
HOLBROOK JA, 1969, J REINE ANGEW MATH, V237, P166
[6]  
Hosseini M., 2018, Math. Slovaca, V68, P1121, DOI [10.1515/ms-2017-0174, DOI 10.1515/MS-2017-0174]
[7]   AN ALTERNATIVE ESTIMATE FOR THE NUMERICAL RADIUS OF HILBERT SPACE OPERATORS [J].
Hosseini, Mohsen Shah ;
Moosavi, Baharak ;
Moradi, Hamid Reza .
MATHEMATICA SLOVACA, 2020, 70 (01) :233-237
[8]   Some Numerical Radius Inequalities for Products of Hilbert Space Operators [J].
Hosseini, Mohsen Shah ;
Moosavi, Baharak .
FILOMAT, 2019, 33 (07) :2089-2093
[9]   Numerical radius inequalities for Hilbert space operators [J].
Kittaneh, F .
STUDIA MATHEMATICA, 2005, 168 (01) :73-80
[10]   NORM OF A DERIVATION [J].
STAMPFLI, JG .
PACIFIC JOURNAL OF MATHEMATICS, 1970, 33 (03) :737-&