3D Hybrid Small Scale Devices

被引:8
作者
Pagaduan, Jayson V. [1 ,2 ]
Bhatta, Anil [2 ]
Romer, Lewis H. [2 ,3 ,4 ]
Gracias, David H. [1 ,5 ]
机构
[1] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Anesthesiol & Crit Care Med, Baltimore, MD 21287 USA
[3] Johns Hopkins Univ, Dept Pediat, Dept Biomed Engn, Dept Cell Biol, Baltimore, MD 21287 USA
[4] Johns Hopkins Univ, Ctr Cell Dynam, Baltimore, MD 21287 USA
[5] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
基金
美国国家科学基金会;
关键词
biomedical engineering; bionics; microtechnology; nanotechnology; robotics; MESENCHYMAL STEM-CELLS; BIOMEDICAL APPLICATIONS; ON-CHIP; RAMAN-SPECTROSCOPY; NANOPARTICLES; DIFFERENTIATION; NANOTECHNOLOGY; MICROFLUIDICS; FABRICATION; SEPARATION;
D O I
10.1002/smll.201702497
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Interfacing nano/microscale elements with biological components in 3D contexts opens new possibilities for mimicry, bionics, and augmentation of organismically and anatomically inspired materials. Abiotic nanoscale elements such as plasmonic nanostructures, piezoelectric ribbons, and thin film semiconductor devices interact with electromagnetic fields to facilitate advanced capabilities such as communication at a distance, digital feedback loops, logic, and memory. Biological components such as proteins, polynucleotides, cells, and organs feature complex chemical synthetic networks that can regulate growth, change shape, adapt, and regenerate. Abiotic and biotic components can be integrated in all three dimensions in a well-ordered and programmed manner with high tunability, versatility, and resolution to produce radically new materials and hybrid devices such as sensor fabrics, anatomically mimetic microfluidic modules, artificial tissues, smart prostheses, and bionic devices. In this critical Review, applications of small scale devices in 3D hybrid integration, biomicrofluidics, advanced prostheses, and bionic organs are discussed.
引用
收藏
页数:10
相关论文
共 126 条
[71]   Human iPSC-based Cardiac Microphysiological System For Drug Screening Applications [J].
Mathur, Anurag ;
Loskill, Peter ;
Shao, Kaifeng ;
Huebsch, Nathaniel ;
Hong, SoonGweon ;
Marcus, Sivan G. ;
Marks, Natalie ;
Mandegar, Mohammad ;
Conklin, Bruce R. ;
Lee, Luke P. ;
Healy, Kevin E. .
SCIENTIFIC REPORTS, 2015, 5
[72]   Cell separation based on size and deformability using microfluidic funnel ratchets [J].
McFaul, Sarah M. ;
Lin, Bill K. ;
Ma, Hongshen .
LAB ON A CHIP, 2012, 12 (13) :2369-2376
[73]   A 3D bioprinted complex structure for engineering the muscle-tendon unit [J].
Merceron, Tyler K. ;
Burt, Morgan ;
Seol, Young-Joon ;
Kang, Hyun-Wook ;
Lee, Sang Jin ;
Yoo, James J. ;
Atala, Anthony .
BIOFABRICATION, 2015, 7 (03)
[74]   Organ printing: computer-aided jet-based 3D tissue engineering [J].
Mironov, V ;
Boland, T ;
Trusk, T ;
Forgacs, G ;
Markwald, RR .
TRENDS IN BIOTECHNOLOGY, 2003, 21 (04) :157-161
[75]   Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients [J].
Morrison, Robert J. ;
Hollister, Scott J. ;
Niedner, Matthew F. ;
Mahani, Maryam Ghadimi ;
Park, Albert H. ;
Mehta, Deepak K. ;
Ohye, Richard G. ;
Greer, Glenn E. .
SCIENCE TRANSLATIONAL MEDICINE, 2015, 7 (285)
[76]   A toolkit of thread-based microfluidics, sensors, and electronics for 3D tissue embedding for medical diagnostics [J].
Mostafalu, Pooria ;
Akbari, Mohsen ;
Alberti, Kyle A. ;
Xu, Qiaobing ;
Khademhosseini, Ali ;
Sonkusale, Sameer R. .
MICROSYSTEMS & NANOENGINEERING, 2016, 2
[77]   3D bioprinting of tissues and organs [J].
Murphy, Sean V. ;
Atala, Anthony .
NATURE BIOTECHNOLOGY, 2014, 32 (08) :773-785
[78]   Gene therapy returns to centre stage [J].
Naldini, Luigi .
NATURE, 2015, 526 (7573) :351-360
[79]   A tissue-engineered jellyfish with biomimetic propulsion [J].
Nawroth, Janna C. ;
Lee, Hyungsuk ;
Feinberg, Adam W. ;
Ripplinger, Crystal M. ;
McCain, Megan L. ;
Grosberg, Anna ;
Dabiri, John O. ;
Parker, Kevin Kit .
NATURE BIOTECHNOLOGY, 2012, 30 (08) :792-797
[80]   Left vagus nerve stimulation suppresses experimentally induced pain [J].
Ness, TJ ;
Randich, A ;
Fillingim, R ;
Faught, RE ;
Backensto, ER .
NEUROLOGY, 2001, 56 (07) :985-986