3D Hybrid Small Scale Devices

被引:8
作者
Pagaduan, Jayson V. [1 ,2 ]
Bhatta, Anil [2 ]
Romer, Lewis H. [2 ,3 ,4 ]
Gracias, David H. [1 ,5 ]
机构
[1] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Anesthesiol & Crit Care Med, Baltimore, MD 21287 USA
[3] Johns Hopkins Univ, Dept Pediat, Dept Biomed Engn, Dept Cell Biol, Baltimore, MD 21287 USA
[4] Johns Hopkins Univ, Ctr Cell Dynam, Baltimore, MD 21287 USA
[5] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
基金
美国国家科学基金会;
关键词
biomedical engineering; bionics; microtechnology; nanotechnology; robotics; MESENCHYMAL STEM-CELLS; BIOMEDICAL APPLICATIONS; ON-CHIP; RAMAN-SPECTROSCOPY; NANOPARTICLES; DIFFERENTIATION; NANOTECHNOLOGY; MICROFLUIDICS; FABRICATION; SEPARATION;
D O I
10.1002/smll.201702497
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Interfacing nano/microscale elements with biological components in 3D contexts opens new possibilities for mimicry, bionics, and augmentation of organismically and anatomically inspired materials. Abiotic nanoscale elements such as plasmonic nanostructures, piezoelectric ribbons, and thin film semiconductor devices interact with electromagnetic fields to facilitate advanced capabilities such as communication at a distance, digital feedback loops, logic, and memory. Biological components such as proteins, polynucleotides, cells, and organs feature complex chemical synthetic networks that can regulate growth, change shape, adapt, and regenerate. Abiotic and biotic components can be integrated in all three dimensions in a well-ordered and programmed manner with high tunability, versatility, and resolution to produce radically new materials and hybrid devices such as sensor fabrics, anatomically mimetic microfluidic modules, artificial tissues, smart prostheses, and bionic devices. In this critical Review, applications of small scale devices in 3D hybrid integration, biomicrofluidics, advanced prostheses, and bionic organs are discussed.
引用
收藏
页数:10
相关论文
共 126 条
[101]   Cell-laden biphasic scaffolds with anisotropic structure for the regeneration of osteochondral tissue [J].
Schuetz, Kathleen ;
Despang, Florian ;
Lode, Anja ;
Gelinsky, Michael .
JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2016, 10 (05) :404-417
[102]  
Schuller JA, 2010, NAT MATER, V9, P193, DOI [10.1038/nmat2630, 10.1038/NMAT2630]
[103]   Patterning of Fibroblast and Matrix Anisotropy within 3D Confinement is Driven by the Cytoskeleton [J].
Serbo, Janna V. ;
Kuo, Scot ;
Lewis, Shawna ;
Lehmann, Matthew ;
Li, Jiuru ;
Gracias, David H. ;
Romer, Lewis H. .
ADVANCED HEALTHCARE MATERIALS, 2016, 5 (01) :146-158
[104]   Drosophila as a live substrate for solid-state microfabrication [J].
Shum, Angela J. ;
Crest, Justin ;
Schubiger, Gerold ;
Parviz, Babak A. .
ADVANCED MATERIALS, 2007, 19 (21) :3608-+
[105]   Powering an inorganic nanodevice with a biomolecular motor [J].
Soong, RK ;
Bachand, GD ;
Neves, HP ;
Olkhovets, AG ;
Craighead, HG ;
Montemagno, CD .
SCIENCE, 2000, 290 (5496) :1555-1558
[106]   Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier [J].
Tang, Benjamin C. ;
Dawson, Michelle ;
Lai, Samuel K. ;
Wang, Ying-Ying ;
Suk, Jung Soo ;
Yang, Ming ;
Zeitlin, Pamela ;
Boyle, Michael P. ;
Fu, Jie ;
Hanes, Justin .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (46) :19268-19273
[107]   Droplet microfluidics [J].
Teh, Shia-Yen ;
Lin, Robert ;
Hung, Lung-Hsin ;
Lee, Abraham P. .
LAB ON A CHIP, 2008, 8 (02) :198-220
[108]   Nanotopography Modulates Mechanotransduction of Stem Cells and Induces Differentiation through Focal Adhesion Kinase [J].
Teo, Benjamin Kim Kiat ;
Wong, Sum Thai ;
Lim, Choon Kiat ;
Kung, Terrence Y. S. ;
Yap, Chong Hao ;
Ramagopal, Yamini ;
Romer, Lewis H. ;
Yim, Evelyn K. F. .
ACS NANO, 2013, 7 (06) :4785-4798
[109]  
Tian BZ, 2012, NAT MATER, V11, P986, DOI [10.1038/NMAT3404, 10.1038/nmat3404]
[110]  
vonsFrey M., 1885, ARCH ANAT PHYSL, P519