3D Hybrid Small Scale Devices

被引:8
作者
Pagaduan, Jayson V. [1 ,2 ]
Bhatta, Anil [2 ]
Romer, Lewis H. [2 ,3 ,4 ]
Gracias, David H. [1 ,5 ]
机构
[1] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Anesthesiol & Crit Care Med, Baltimore, MD 21287 USA
[3] Johns Hopkins Univ, Dept Pediat, Dept Biomed Engn, Dept Cell Biol, Baltimore, MD 21287 USA
[4] Johns Hopkins Univ, Ctr Cell Dynam, Baltimore, MD 21287 USA
[5] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
基金
美国国家科学基金会;
关键词
biomedical engineering; bionics; microtechnology; nanotechnology; robotics; MESENCHYMAL STEM-CELLS; BIOMEDICAL APPLICATIONS; ON-CHIP; RAMAN-SPECTROSCOPY; NANOPARTICLES; DIFFERENTIATION; NANOTECHNOLOGY; MICROFLUIDICS; FABRICATION; SEPARATION;
D O I
10.1002/smll.201702497
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Interfacing nano/microscale elements with biological components in 3D contexts opens new possibilities for mimicry, bionics, and augmentation of organismically and anatomically inspired materials. Abiotic nanoscale elements such as plasmonic nanostructures, piezoelectric ribbons, and thin film semiconductor devices interact with electromagnetic fields to facilitate advanced capabilities such as communication at a distance, digital feedback loops, logic, and memory. Biological components such as proteins, polynucleotides, cells, and organs feature complex chemical synthetic networks that can regulate growth, change shape, adapt, and regenerate. Abiotic and biotic components can be integrated in all three dimensions in a well-ordered and programmed manner with high tunability, versatility, and resolution to produce radically new materials and hybrid devices such as sensor fabrics, anatomically mimetic microfluidic modules, artificial tissues, smart prostheses, and bionic devices. In this critical Review, applications of small scale devices in 3D hybrid integration, biomicrofluidics, advanced prostheses, and bionic organs are discussed.
引用
收藏
页数:10
相关论文
共 126 条
[1]   Organ shortage crisis: Problems and possible solutions [J].
Abouna, G. M. .
TRANSPLANTATION PROCEEDINGS, 2008, 40 (01) :34-38
[2]   Magnetically-guided self-assembly of fibrin matrices with ordered nano-scale structure for tissue engineering [J].
Alsberg, Eben ;
Feinstein, Efraim ;
Joy, M. P. ;
Prentiss, Mara ;
Ingber, Donald E. .
TISSUE ENGINEERING, 2006, 12 (11) :3247-3256
[3]   Cellular Heterogeneity: Do Differences Make a Difference? [J].
Altschuler, Steven J. ;
Wu, Lani F. .
CELL, 2010, 141 (04) :559-563
[4]  
[Anonymous], [No title captured]
[5]   Tailoring three-dimensional architectures by rolled-up nanotechnology for mimicking microvasculatures [J].
Arayanarakool, Rerngchai ;
Meyer, Anne K. ;
Helbig, Linda ;
Sanchez, Samuel ;
Schmidt, Oliver G. .
LAB ON A CHIP, 2015, 15 (14) :2981-2989
[6]   Nanoinjection: pronuclear DNA delivery using a charged lance [J].
Aten, Quentin T. ;
Jensen, Brian D. ;
Tamowski, Susan ;
Wilson, Aubrey M. ;
Howell, Larry L. ;
Burnett, Sandra H. .
TRANSGENIC RESEARCH, 2012, 21 (06) :1279-1290
[7]   Laser-Induced Damage and Recovery of Plasmonically Targeted Human Endothelial Cells [J].
Bartczak, Dorota ;
Muskens, Otto L. ;
Millar, Timothy M. ;
Sanchez-Elsner, Tilman ;
Kanaras, Antonios G. .
NANO LETTERS, 2011, 11 (03) :1358-1363
[8]   Microfluidic organs-on-chips [J].
Bhatia, Sangeeta N. ;
Ingber, Donald E. .
NATURE BIOTECHNOLOGY, 2014, 32 (08) :760-772
[9]   Inhibition of respiratory viruses by nasally administered siRNA [J].
Bitko, V ;
Musiyenko, A ;
Shulyayeva, O ;
Barik, S .
NATURE MEDICINE, 2005, 11 (01) :50-55
[10]   Corticospinal neuroprostheses to restore locomotion after spinal cord injury [J].
Borton, David ;
Bonizzato, Marco ;
Beauparlant, Janine ;
DiGiovanna, Jack ;
Moraud, Eduardo M. ;
Wenger, Nikolaus ;
Musienko, Pavel ;
Minev, Ivan R. ;
Lacour, Stephanie P. ;
Millan, Jose del R. ;
Micera, Silvestro ;
Courtine, Gregoire .
NEUROSCIENCE RESEARCH, 2014, 78 :21-29