Quantum Stabilization of the Frustrated Hydrogen Bonding Structure in the Hydrogen Fluoride Trimer

被引:6
作者
Io, Aiko [1 ,2 ]
Kawatsu, Tsutomu [2 ,3 ]
Tachikawa, Masanori [2 ]
机构
[1] Nissan Chem Corp, Chem Res Labs, Anal Res Dept, Computat Sci Grp, Tsuboi Nishi 2-10-1, Funabashi, Chiba 2748507, Japan
[2] Yokohama City Univ, Grad Sch Nanobiosci, Kanazawa Ku, Seto 22-2, Yokohama, Kanagawa 2360027, Japan
[3] RIKEN, Head Off Informat Syst & Cybersecur, R&D Grp, Computat Engn Applicat Unit, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
关键词
GROUND-STATE STRUCTURE; MOLECULAR-DYNAMICS; SPECTROSCOPY; CLUSTER;
D O I
10.1021/acs.jpca.9b04407
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We performed ab initio path integral molecular dynamics (PIMD) and molecular dynamics (MD) simulations to discuss the thermal and nuclear quantum effects on the stabilities of hydrogen bonding network in a hydrogen fluoride trimer (HF)(3) cluster. By the conventional molecular orbital calculation, the (HF)(3) cluster has an equilateral triangle shape, which has a frustration in the chemical structure of the hydrogen bonds, whereas the hydrogen bonding structure of a hydrogen fluoride dimer (HF)(2) cluster is nearly perpendicular to the acceptor molecule. The ratio of the triangular structures with the three hydrogen bondings in the PIMD simulation is larger than that in the MD one, whereas nonhydrogen bonding conformations such as a dimerlike structure are often found in MD simulation. The nuclear quantum effect stabilizes the frustrated hydrogen bonding network of the triangular (HF)(3) cluster.
引用
收藏
页码:7950 / 7955
页数:6
相关论文
共 50 条
  • [21] tert-Butyl Carbocation in Condensed Phases: Stabilization via Hyperconjugation, Polarization, and Hydrogen Bonding
    Stoyanov, Evgenii S.
    Gomes, Gabriel dos Passos
    JOURNAL OF PHYSICAL CHEMISTRY A, 2015, 119 (32) : 8619 - 8629
  • [22] Protonation Dynamics and Hydrogen Bonding in Aqueous Sulfuric Acid
    Niskanen, Johannes
    Sahle, Christoph J.
    Juurinen, Iina
    Koskelo, Jaakko
    Lehtola, Susi
    Verbeni, Roberto
    Mueller, Harald
    Hakala, Mikko
    Huotari, Simo
    JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (35) : 11732 - 11739
  • [23] Reaction mechanism of hydrogen activation by frustrated Lewis pairs
    Liu, Lei
    Lukose, Binit
    Jaque, Pablo
    Ensing, Bernd
    GREEN ENERGY & ENVIRONMENT, 2019, 4 (01) : 20 - 28
  • [24] Nuclear quantum effect on the hydrogen-bonded structure of guanine-cytosine pair
    Daido, Masashi
    Koizumi, Akihito
    Shiga, Motoyuki
    Tachikawa, Masanori
    THEORETICAL CHEMISTRY ACCOUNTS, 2011, 130 (2-3) : 385 - 391
  • [25] Uranosphaerite: Crystal structure, hydrogen bonding, mechanics, infrared and Raman spectroscopy and thermodynamics
    Colmenero, Francisco
    Plasil, Jakub
    Nemec, Ivan
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2020, 141
  • [26] Hydrogen bonding and structure of uracil-water and thymine-water complexes
    Carlos Lopez, Juan
    Luis Alonso, Jose
    Pena, Isabel
    Vaquero, Vanesa
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (42) : 14128 - 14134
  • [27] Hydrogen Bonding in the Electronic Excited State
    Zhao, Guang-Jiu
    Han, Ke-Li
    ACCOUNTS OF CHEMICAL RESEARCH, 2012, 45 (03) : 404 - 413
  • [28] Hydrogen bonding impact on chitosan plasticization
    Chen, Mingjie
    Runge, Troy
    Wang, Lingling
    Li, Ruimin
    Feng, Jing
    Shu, Xiu-Lin
    Shi, Qing-Shan
    CARBOHYDRATE POLYMERS, 2018, 200 : 115 - 121
  • [29] A link between structure, diffusion and rotations of hydrogen bonding tracers in ionic liquids
    Araque, Juan C.
    Daly, Ryan P.
    Margulis, Claudio J.
    JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (20)
  • [30] Crossover from hydrogen to chemical bonding
    Dereka, Bogdan
    Yu, Qi
    Lewis, Nicholas H. C.
    Carpenter, William B.
    Bowman, Joel M.
    Tokmakoff, Andrei
    SCIENCE, 2021, 371 (6525) : 160 - +