Predominance of the weakest species in Lotka-Volterra and May-Leonard formulations of the rock-paper-scissors model

被引:39
作者
Avelino, P. P. [1 ,2 ,3 ]
de Oliveira, B. F. [4 ]
Trintin, R. S. [4 ]
机构
[1] Univ Porto, Inst Astrofis & Ciencias Espaco, CAUP, Rua Estrelas, P-4150762 Porto, Portugal
[2] Univ Porto, Fac Ciencias, Dept Fis & Astron, Rua Campo Alegre 687, P-4169007 Porto, Portugal
[3] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England
[4] Univ Estadual Maringa, Dept Fis, Av Colombo 5790, BR-87020900 Maringa, Parana, Brazil
基金
巴西圣保罗研究基金会;
关键词
STRING NETWORKS; COMPETITION; GAME; BIODIVERSITY; COEXISTENCE; PROMOTES;
D O I
10.1103/PhysRevE.100.042209
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We revisit the problem of the predominance of the "weakest" species in the context of Lotka-Volterra and May-Leonard formulations of a spatial stochastic rock-paper-scissors model in which one of the species has its predation probability reduced by 0 < P-w < 1. We show that, despite the different population dynamics and spatial patterns, these two formulations lead to qualitatively similar results for the late time values of the relative abundances of the three species (as a function of P-w), as long as the simulation lattices are sufficiently large for coexistence to prevail-the "weakest" species generally having an advantage over the others (specially over its predator). However, for smaller simulation lattices, we find that the relatively large oscillations at the initial stages of simulations with random initial conditions may result in a significant dependence of the probability of species survival on the lattice size.
引用
收藏
页数:7
相关论文
共 54 条
[1]   A competitive network theory of species diversity [J].
Allesina, Stefano ;
Levine, Jonathan M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (14) :5638-5642
[2]   Expanding spatial domains and transient scaling regimes in populations with local cyclic competition [J].
Avelino, P. P. ;
Menezes, J. ;
de Oliveira, B. F. ;
Pereira, T. A. .
PHYSICAL REVIEW E, 2019, 99 (05)
[3]   Spatial patterns and biodiversity in off-lattice simulations of a cyclic three-species Lotka-Volterra model [J].
Avelino, P. P. ;
Bazeia, D. ;
Losano, L. ;
Menezes, J. ;
de Oliveira, B. F. .
EPL, 2018, 121 (04)
[4]   String networks with junctions in competition models [J].
Avelino, P. P. ;
Bazeia, D. ;
Losano, L. ;
Menezes, J. ;
de Oliveira, B. F. .
PHYSICS LETTERS A, 2017, 381 (11) :1014-1020
[5]   Interfaces with internal structures in generalized rock-paper-scissors models [J].
Avelino, P. P. ;
Bazeia, D. ;
Losano, L. ;
Menezes, J. ;
de Oliveira, B. F. .
PHYSICAL REVIEW E, 2014, 89 (04)
[6]   String networks in ZN Lotka-Volterra competition models [J].
Avelino, P. P. ;
Bazeia, D. ;
Menezes, J. ;
de Oliveira, B. F. .
PHYSICS LETTERS A, 2014, 378 (04) :393-397
[7]   Junctions and spiral patterns in generalized rock-paper-scissors models [J].
Avelino, P. P. ;
Bazeia, D. ;
Losano, L. ;
Menezes, J. ;
Oliveira, B. F. .
PHYSICAL REVIEW E, 2012, 86 (03)
[8]   von Neummann's and related scaling laws in rock-paper-scissors-type games [J].
Avelino, P. P. ;
Bazeia, D. ;
Losano, L. ;
Menezes, J. .
PHYSICAL REVIEW E, 2012, 86 (03)
[9]   Invasion-controlled pattern formation in a generalized multispecies predator-prey system [J].
Bazeia, D. ;
de Oliveira, B. F. ;
Szolnoki, A. .
PHYSICAL REVIEW E, 2019, 99 (05)
[10]   Phase transitions in dependence of apex predator decaying ratio in a cyclic dominant system [J].
Bazeia, D. ;
de Oliveira, B. F. ;
Szolnoki, A. .
EPL, 2018, 124 (06)