Sharp Boundedness of Quasiconformal Composition Operators on Triebel-Lizorkin Type Spaces

被引:6
作者
Yang, Dachun [1 ]
Yuan, Wen [1 ]
Zhou, Yuan [2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, Dept Math, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasiconformal mapping; Composition; Triebel-Lizorkin type space; BESOV-TYPE; DECOMPOSITION; EQUATIONS; THEOREMS;
D O I
10.1007/s12220-016-9731-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given quasiconformal mapping f : R-n -> R-n, the authors show that the boundedness or the unboundedness of the composition operator C-f on Triebel-Lizorkin type spaces F-p,q(alpha,1/p-alpha/n) (R-n) or, more generally, Hajlasz-Triebel-Lizorkin type spaces M-p,q(alpha,1/p-alpha/n) (R-n) depends on the indexes alpha, p and the degenerate sets of the Jacobian J(f), but not on the index q. Actually, the following dual relation is proved to be sharp to obtain the boundedness of C-f on F-p,q(alpha,1/p-alpha/n) (R-n) and M-p,q(alpha,1/p-alpha/n) (R-n): [GRAPHIC] where alpha is the regularity index, p the integration index and dim(L)E (resp., dim(G)E) the local (resp., global) self-similar Minkowski dimension of the degenerate set E of J(f). This is completely different from the results for Sobolev, BMO, Besov and Triebel-Lizorkin spaces, and extends the recent result for Q-spaces. Finally, the authors show that, if n - 1 < alpha p < n, then a homeomorphism for which the composition operator is bounded on M-p,q(alpha,1/p-alpha/n) (R-n) must be quasiconformal.
引用
收藏
页码:1548 / 1588
页数:41
相关论文
共 43 条