Cocyclic subshifts

被引:19
作者
Kwapisz, J [1 ]
机构
[1] Montana State Univ, Dept Math Sci, Bozeman, MT 59717 USA
关键词
D O I
10.1007/s002099900107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by the computations in the theory of cohomological Conley index, cocyclic subshifts are the supports of locally constant matrix cocycles on the full shift over a finite alphabet. They properly generalize sofic systems and topological Markov chains; and, via the Wedderburn-Artin theory of finite-dimensional algebras, admit a similar structure theory with a spectral decomposition into mixing components. These components have specification, which implies intrinsic ergodicity and entropy generation by sequences of horseshoes. Also, a zeta-like generating function for cocyclic subshifts leads to simple criteria for existence of a factor map onto the full two-shift - which gives practical tools for detecting chaos in general discrete dynamical systems.
引用
收藏
页码:255 / 290
页数:36
相关论文
共 21 条
  • [1] Adkins W.A., 1992, ALGEBRA APPROACH VIA
  • [2] [Anonymous], INTRO SYMBOLIC DYNAM
  • [3] BERTRAND A, 1988, LECT NOTES COMPUT SC, V311, P86
  • [4] CARBINATTO M, 1996, IN PRESS ERG TH DYN
  • [5] SOFIC SYSTEMS
    COVEN, EM
    PAUL, ME
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1975, 20 (02) : 165 - 177
  • [6] Denker M., 1976, LECT NOTES MATH, V527
  • [7] DROZD YA, 1994, FINITE DIMENSIONAL A
  • [8] FISHER R, 1975, MONATSH MATH, V80, P179
  • [9] Hungerford T. W., 1980, GRADUATE TEXTS MATH
  • [10] Katok A., 1980, Publ. Math. Inst. Hautes Etudes Sci., V51, P137, DOI 10.1007/BF02684777